This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The connected component containing A is a subset of any clopen set containing A . (Contributed by Mario Carneiro, 20-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | conncomp.2 | |- S = U. { x e. ~P X | ( A e. x /\ ( J |`t x ) e. Conn ) } |
|
| Assertion | conncompclo | |- ( ( J e. ( TopOn ` X ) /\ T e. ( J i^i ( Clsd ` J ) ) /\ A e. T ) -> S C_ T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | conncomp.2 | |- S = U. { x e. ~P X | ( A e. x /\ ( J |`t x ) e. Conn ) } |
|
| 2 | eqid | |- U. J = U. J |
|
| 3 | simp1 | |- ( ( J e. ( TopOn ` X ) /\ T e. ( J i^i ( Clsd ` J ) ) /\ A e. T ) -> J e. ( TopOn ` X ) ) |
|
| 4 | simp2 | |- ( ( J e. ( TopOn ` X ) /\ T e. ( J i^i ( Clsd ` J ) ) /\ A e. T ) -> T e. ( J i^i ( Clsd ` J ) ) ) |
|
| 5 | 4 | elin1d | |- ( ( J e. ( TopOn ` X ) /\ T e. ( J i^i ( Clsd ` J ) ) /\ A e. T ) -> T e. J ) |
| 6 | toponss | |- ( ( J e. ( TopOn ` X ) /\ T e. J ) -> T C_ X ) |
|
| 7 | 3 5 6 | syl2anc | |- ( ( J e. ( TopOn ` X ) /\ T e. ( J i^i ( Clsd ` J ) ) /\ A e. T ) -> T C_ X ) |
| 8 | simp3 | |- ( ( J e. ( TopOn ` X ) /\ T e. ( J i^i ( Clsd ` J ) ) /\ A e. T ) -> A e. T ) |
|
| 9 | 7 8 | sseldd | |- ( ( J e. ( TopOn ` X ) /\ T e. ( J i^i ( Clsd ` J ) ) /\ A e. T ) -> A e. X ) |
| 10 | 1 | conncompcld | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> S e. ( Clsd ` J ) ) |
| 11 | 3 9 10 | syl2anc | |- ( ( J e. ( TopOn ` X ) /\ T e. ( J i^i ( Clsd ` J ) ) /\ A e. T ) -> S e. ( Clsd ` J ) ) |
| 12 | 2 | cldss | |- ( S e. ( Clsd ` J ) -> S C_ U. J ) |
| 13 | 11 12 | syl | |- ( ( J e. ( TopOn ` X ) /\ T e. ( J i^i ( Clsd ` J ) ) /\ A e. T ) -> S C_ U. J ) |
| 14 | 1 | conncompconn | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> ( J |`t S ) e. Conn ) |
| 15 | 3 9 14 | syl2anc | |- ( ( J e. ( TopOn ` X ) /\ T e. ( J i^i ( Clsd ` J ) ) /\ A e. T ) -> ( J |`t S ) e. Conn ) |
| 16 | 1 | conncompid | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> A e. S ) |
| 17 | 3 9 16 | syl2anc | |- ( ( J e. ( TopOn ` X ) /\ T e. ( J i^i ( Clsd ` J ) ) /\ A e. T ) -> A e. S ) |
| 18 | inelcm | |- ( ( A e. T /\ A e. S ) -> ( T i^i S ) =/= (/) ) |
|
| 19 | 8 17 18 | syl2anc | |- ( ( J e. ( TopOn ` X ) /\ T e. ( J i^i ( Clsd ` J ) ) /\ A e. T ) -> ( T i^i S ) =/= (/) ) |
| 20 | 4 | elin2d | |- ( ( J e. ( TopOn ` X ) /\ T e. ( J i^i ( Clsd ` J ) ) /\ A e. T ) -> T e. ( Clsd ` J ) ) |
| 21 | 2 13 15 5 19 20 | connsubclo | |- ( ( J e. ( TopOn ` X ) /\ T e. ( J i^i ( Clsd ` J ) ) /\ A e. T ) -> S C_ T ) |