This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A connected T_1 space is perfect, unless it is the topology of a singleton. (Contributed by Mario Carneiro, 26-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | t1connperf.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | t1connperf | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ∧ ¬ 𝑋 ≈ 1o ) → 𝐽 ∈ Perf ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | t1connperf.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | simplr | ⊢ ( ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝑋 ∧ { 𝑥 } ∈ 𝐽 ) ) → 𝐽 ∈ Conn ) | |
| 3 | simprr | ⊢ ( ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝑋 ∧ { 𝑥 } ∈ 𝐽 ) ) → { 𝑥 } ∈ 𝐽 ) | |
| 4 | vex | ⊢ 𝑥 ∈ V | |
| 5 | 4 | snnz | ⊢ { 𝑥 } ≠ ∅ |
| 6 | 5 | a1i | ⊢ ( ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝑋 ∧ { 𝑥 } ∈ 𝐽 ) ) → { 𝑥 } ≠ ∅ ) |
| 7 | 1 | t1sncld | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝑥 ∈ 𝑋 ) → { 𝑥 } ∈ ( Clsd ‘ 𝐽 ) ) |
| 8 | 7 | ad2ant2r | ⊢ ( ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝑋 ∧ { 𝑥 } ∈ 𝐽 ) ) → { 𝑥 } ∈ ( Clsd ‘ 𝐽 ) ) |
| 9 | 1 2 3 6 8 | connclo | ⊢ ( ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝑋 ∧ { 𝑥 } ∈ 𝐽 ) ) → { 𝑥 } = 𝑋 ) |
| 10 | 4 | ensn1 | ⊢ { 𝑥 } ≈ 1o |
| 11 | 9 10 | eqbrtrrdi | ⊢ ( ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝑋 ∧ { 𝑥 } ∈ 𝐽 ) ) → 𝑋 ≈ 1o ) |
| 12 | 11 | rexlimdvaa | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) → ( ∃ 𝑥 ∈ 𝑋 { 𝑥 } ∈ 𝐽 → 𝑋 ≈ 1o ) ) |
| 13 | 12 | con3d | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) → ( ¬ 𝑋 ≈ 1o → ¬ ∃ 𝑥 ∈ 𝑋 { 𝑥 } ∈ 𝐽 ) ) |
| 14 | ralnex | ⊢ ( ∀ 𝑥 ∈ 𝑋 ¬ { 𝑥 } ∈ 𝐽 ↔ ¬ ∃ 𝑥 ∈ 𝑋 { 𝑥 } ∈ 𝐽 ) | |
| 15 | 13 14 | imbitrrdi | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) → ( ¬ 𝑋 ≈ 1o → ∀ 𝑥 ∈ 𝑋 ¬ { 𝑥 } ∈ 𝐽 ) ) |
| 16 | t1top | ⊢ ( 𝐽 ∈ Fre → 𝐽 ∈ Top ) | |
| 17 | 16 | adantr | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) → 𝐽 ∈ Top ) |
| 18 | 1 | isperf3 | ⊢ ( 𝐽 ∈ Perf ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝑋 ¬ { 𝑥 } ∈ 𝐽 ) ) |
| 19 | 18 | baib | ⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ Perf ↔ ∀ 𝑥 ∈ 𝑋 ¬ { 𝑥 } ∈ 𝐽 ) ) |
| 20 | 17 19 | syl | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) → ( 𝐽 ∈ Perf ↔ ∀ 𝑥 ∈ 𝑋 ¬ { 𝑥 } ∈ 𝐽 ) ) |
| 21 | 15 20 | sylibrd | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ) → ( ¬ 𝑋 ≈ 1o → 𝐽 ∈ Perf ) ) |
| 22 | 21 | 3impia | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝐽 ∈ Conn ∧ ¬ 𝑋 ≈ 1o ) → 𝐽 ∈ Perf ) |