This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of two compositions. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | comfeqval.b | ||
| comfeqval.h | |||
| comfeqval.1 | |||
| comfeqval.2 | |||
| comfeqval.3 | |||
| comfeqval.4 | |||
| comfeqval.x | |||
| comfeqval.y | |||
| comfeqval.z | |||
| comfeqval.f | |||
| comfeqval.g | |||
| Assertion | comfeqval |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comfeqval.b | ||
| 2 | comfeqval.h | ||
| 3 | comfeqval.1 | ||
| 4 | comfeqval.2 | ||
| 5 | comfeqval.3 | ||
| 6 | comfeqval.4 | ||
| 7 | comfeqval.x | ||
| 8 | comfeqval.y | ||
| 9 | comfeqval.z | ||
| 10 | comfeqval.f | ||
| 11 | comfeqval.g | ||
| 12 | 6 | oveqd | |
| 13 | 12 | oveqd | |
| 14 | eqid | ||
| 15 | 14 1 2 3 7 8 9 10 11 | comfval | |
| 16 | eqid | ||
| 17 | eqid | ||
| 18 | eqid | ||
| 19 | 5 | homfeqbas | |
| 20 | 1 19 | eqtrid | |
| 21 | 7 20 | eleqtrd | |
| 22 | 8 20 | eleqtrd | |
| 23 | 9 20 | eleqtrd | |
| 24 | 1 2 18 5 7 8 | homfeqval | |
| 25 | 10 24 | eleqtrd | |
| 26 | 1 2 18 5 8 9 | homfeqval | |
| 27 | 11 26 | eleqtrd | |
| 28 | 16 17 18 4 21 22 23 25 27 | comfval | |
| 29 | 13 15 28 | 3eqtr3d |