This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | comfffval.o | ⊢ 𝑂 = ( compf ‘ 𝐶 ) | |
| comfffval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| comfffval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| comfffval.x | ⊢ · = ( comp ‘ 𝐶 ) | ||
| comffval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| comffval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| comffval.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| comfval.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| comfval.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) ) | ||
| Assertion | comfval | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 𝑂 𝑍 ) 𝐹 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comfffval.o | ⊢ 𝑂 = ( compf ‘ 𝐶 ) | |
| 2 | comfffval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | comfffval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 4 | comfffval.x | ⊢ · = ( comp ‘ 𝐶 ) | |
| 5 | comffval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | comffval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | comffval.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 8 | comfval.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 9 | comfval.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) ) | |
| 10 | 1 2 3 4 5 6 7 | comffval | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 𝑂 𝑍 ) = ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) ) ) |
| 11 | oveq12 | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) → ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) |
| 13 | ovexd | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ V ) | |
| 14 | 10 12 9 8 13 | ovmpod | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 𝑂 𝑍 ) 𝐹 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) |