This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property " <. F , G >. is a section of <. K , L >. " in a category of small categories (in a universe); expressed explicitly. (Contributed by Zhi Wang, 15-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofidval.i | ⊢ 𝐼 = ( idfunc ‘ 𝐷 ) | |
| cofidval.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| cofidval.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | ||
| cofidval.k | ⊢ ( 𝜑 → 𝐾 ( 𝐸 Func 𝐷 ) 𝐿 ) | ||
| cofidval.o | ⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 𝐼 ) | ||
| cofidval.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | ||
| Assertion | cofidval | ⊢ ( 𝜑 → ( ( 𝐾 ∘ 𝐹 ) = ( I ↾ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) = ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofidval.i | ⊢ 𝐼 = ( idfunc ‘ 𝐷 ) | |
| 2 | cofidval.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 3 | cofidval.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | |
| 4 | cofidval.k | ⊢ ( 𝜑 → 𝐾 ( 𝐸 Func 𝐷 ) 𝐿 ) | |
| 5 | cofidval.o | ⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 𝐼 ) | |
| 6 | cofidval.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | |
| 7 | 2 3 4 | cofuval2 | ⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 ( 𝐾 ∘ 𝐹 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) 〉 ) |
| 8 | 3 | funcrcl2 | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 9 | 1 2 8 6 | idfuval | ⊢ ( 𝜑 → 𝐼 = 〈 ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) 〉 ) |
| 10 | 5 7 9 | 3eqtr3d | ⊢ ( 𝜑 → 〈 ( 𝐾 ∘ 𝐹 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) 〉 = 〈 ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) 〉 ) |
| 11 | 2 | fvexi | ⊢ 𝐵 ∈ V |
| 12 | resiexg | ⊢ ( 𝐵 ∈ V → ( I ↾ 𝐵 ) ∈ V ) | |
| 13 | 11 12 | ax-mp | ⊢ ( I ↾ 𝐵 ) ∈ V |
| 14 | 11 11 | xpex | ⊢ ( 𝐵 × 𝐵 ) ∈ V |
| 15 | 14 | mptex | ⊢ ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) ∈ V |
| 16 | 13 15 | opth2 | ⊢ ( 〈 ( 𝐾 ∘ 𝐹 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) 〉 = 〈 ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) 〉 ↔ ( ( 𝐾 ∘ 𝐹 ) = ( I ↾ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) = ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) ) ) |
| 17 | 10 16 | sylib | ⊢ ( 𝜑 → ( ( 𝐾 ∘ 𝐹 ) = ( I ↾ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) = ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) ) ) |