This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property " <. F , G >. is a section of <. K , L >. " in a category of small categories (in a universe); expressed explicitly. (Contributed by Zhi Wang, 15-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofidval.i | |- I = ( idFunc ` D ) |
|
| cofidval.b | |- B = ( Base ` D ) |
||
| cofidval.f | |- ( ph -> F ( D Func E ) G ) |
||
| cofidval.k | |- ( ph -> K ( E Func D ) L ) |
||
| cofidval.o | |- ( ph -> ( <. K , L >. o.func <. F , G >. ) = I ) |
||
| cofidval.h | |- H = ( Hom ` D ) |
||
| Assertion | cofidval | |- ( ph -> ( ( K o. F ) = ( _I |` B ) /\ ( x e. B , y e. B |-> ( ( ( F ` x ) L ( F ` y ) ) o. ( x G y ) ) ) = ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofidval.i | |- I = ( idFunc ` D ) |
|
| 2 | cofidval.b | |- B = ( Base ` D ) |
|
| 3 | cofidval.f | |- ( ph -> F ( D Func E ) G ) |
|
| 4 | cofidval.k | |- ( ph -> K ( E Func D ) L ) |
|
| 5 | cofidval.o | |- ( ph -> ( <. K , L >. o.func <. F , G >. ) = I ) |
|
| 6 | cofidval.h | |- H = ( Hom ` D ) |
|
| 7 | 2 3 4 | cofuval2 | |- ( ph -> ( <. K , L >. o.func <. F , G >. ) = <. ( K o. F ) , ( x e. B , y e. B |-> ( ( ( F ` x ) L ( F ` y ) ) o. ( x G y ) ) ) >. ) |
| 8 | 3 | funcrcl2 | |- ( ph -> D e. Cat ) |
| 9 | 1 2 8 6 | idfuval | |- ( ph -> I = <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) >. ) |
| 10 | 5 7 9 | 3eqtr3d | |- ( ph -> <. ( K o. F ) , ( x e. B , y e. B |-> ( ( ( F ` x ) L ( F ` y ) ) o. ( x G y ) ) ) >. = <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) >. ) |
| 11 | 2 | fvexi | |- B e. _V |
| 12 | resiexg | |- ( B e. _V -> ( _I |` B ) e. _V ) |
|
| 13 | 11 12 | ax-mp | |- ( _I |` B ) e. _V |
| 14 | 11 11 | xpex | |- ( B X. B ) e. _V |
| 15 | 14 | mptex | |- ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) e. _V |
| 16 | 13 15 | opth2 | |- ( <. ( K o. F ) , ( x e. B , y e. B |-> ( ( ( F ` x ) L ( F ` y ) ) o. ( x G y ) ) ) >. = <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) >. <-> ( ( K o. F ) = ( _I |` B ) /\ ( x e. B , y e. B |-> ( ( ( F ` x ) L ( F ` y ) ) o. ( x G y ) ) ) = ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) ) ) |
| 17 | 10 16 | sylib | |- ( ph -> ( ( K o. F ) = ( _I |` B ) /\ ( x e. B , y e. B |-> ( ( ( F ` x ) L ( F ` y ) ) o. ( x G y ) ) ) = ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) ) ) |