This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If " F is a section of G " in a category of small categories (in a universe), then the morphism part of F is injective, and the morphism part of G is surjective in the image of F . (Contributed by Zhi Wang, 15-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofidval.i | ⊢ 𝐼 = ( idfunc ‘ 𝐷 ) | |
| cofidval.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| cofidval.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | ||
| cofidval.k | ⊢ ( 𝜑 → 𝐾 ( 𝐸 Func 𝐷 ) 𝐿 ) | ||
| cofidval.o | ⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 𝐼 ) | ||
| cofidval.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | ||
| cofidf2.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | ||
| cofidf2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| cofidf2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | cofidf2 | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ∧ ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) : ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) –onto→ ( 𝑋 𝐻 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofidval.i | ⊢ 𝐼 = ( idfunc ‘ 𝐷 ) | |
| 2 | cofidval.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 3 | cofidval.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | |
| 4 | cofidval.k | ⊢ ( 𝜑 → 𝐾 ( 𝐸 Func 𝐷 ) 𝐿 ) | |
| 5 | cofidval.o | ⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 𝐼 ) | |
| 6 | cofidval.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | |
| 7 | cofidf2.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | |
| 8 | cofidf2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 9 | cofidf2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 10 | df-br | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) | |
| 11 | 3 10 | sylib | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
| 12 | df-br | ⊢ ( 𝐾 ( 𝐸 Func 𝐷 ) 𝐿 ↔ 〈 𝐾 , 𝐿 〉 ∈ ( 𝐸 Func 𝐷 ) ) | |
| 13 | 4 12 | sylib | ⊢ ( 𝜑 → 〈 𝐾 , 𝐿 〉 ∈ ( 𝐸 Func 𝐷 ) ) |
| 14 | 1 2 11 13 5 6 7 8 9 | cofidf2a | ⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) ∧ ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) ( 2nd ‘ 〈 𝐾 , 𝐿 〉 ) ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) : ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) –onto→ ( 𝑋 𝐻 𝑌 ) ) ) |
| 15 | 3 | func2nd | ⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐺 ) |
| 16 | 15 | oveqd | ⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑌 ) = ( 𝑋 𝐺 𝑌 ) ) |
| 17 | eqidd | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 𝐻 𝑌 ) ) | |
| 18 | 3 | func1st | ⊢ ( 𝜑 → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) |
| 19 | 18 | fveq1d | ⊢ ( 𝜑 → ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 20 | 18 | fveq1d | ⊢ ( 𝜑 → ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 21 | 19 20 | oveq12d | ⊢ ( 𝜑 → ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
| 22 | 16 17 21 | f1eq123d | ⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) ↔ ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 23 | 4 | func2nd | ⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐾 , 𝐿 〉 ) = 𝐿 ) |
| 24 | 23 19 20 | oveq123d | ⊢ ( 𝜑 → ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) ( 2nd ‘ 〈 𝐾 , 𝐿 〉 ) ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ) |
| 25 | 24 21 17 | foeq123d | ⊢ ( 𝜑 → ( ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) ( 2nd ‘ 〈 𝐾 , 𝐿 〉 ) ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) : ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) –onto→ ( 𝑋 𝐻 𝑌 ) ↔ ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) : ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) –onto→ ( 𝑋 𝐻 𝑌 ) ) ) |
| 26 | 22 25 | anbi12d | ⊢ ( 𝜑 → ( ( ( 𝑋 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) ∧ ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) ( 2nd ‘ 〈 𝐾 , 𝐿 〉 ) ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) : ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) –onto→ ( 𝑋 𝐻 𝑌 ) ) ↔ ( ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ∧ ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) : ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) –onto→ ( 𝑋 𝐻 𝑌 ) ) ) ) |
| 27 | 14 26 | mpbid | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ∧ ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) : ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) –onto→ ( 𝑋 𝐻 𝑌 ) ) ) |