This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If " <. F , G >. is a section of <. K , L >. " in a category of small categories (in a universe), then F is injective, and K is surjective. (Contributed by Zhi Wang, 15-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofidval.i | ⊢ 𝐼 = ( idfunc ‘ 𝐷 ) | |
| cofidval.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| cofidval.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | ||
| cofidval.k | ⊢ ( 𝜑 → 𝐾 ( 𝐸 Func 𝐷 ) 𝐿 ) | ||
| cofidval.o | ⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 𝐼 ) | ||
| cofidf1.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | ||
| Assertion | cofidf1 | ⊢ ( 𝜑 → ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐾 : 𝐶 –onto→ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofidval.i | ⊢ 𝐼 = ( idfunc ‘ 𝐷 ) | |
| 2 | cofidval.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 3 | cofidval.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | |
| 4 | cofidval.k | ⊢ ( 𝜑 → 𝐾 ( 𝐸 Func 𝐷 ) 𝐿 ) | |
| 5 | cofidval.o | ⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 𝐼 ) | |
| 6 | cofidf1.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | |
| 7 | 2 6 3 | funcf1 | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 8 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 9 | 1 2 3 4 5 8 | cofidval | ⊢ ( 𝜑 → ( ( 𝐾 ∘ 𝐹 ) = ( I ↾ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) = ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) |
| 10 | 9 | simpld | ⊢ ( 𝜑 → ( 𝐾 ∘ 𝐹 ) = ( I ↾ 𝐵 ) ) |
| 11 | fcof1 | ⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ( 𝐾 ∘ 𝐹 ) = ( I ↾ 𝐵 ) ) → 𝐹 : 𝐵 –1-1→ 𝐶 ) | |
| 12 | 7 10 11 | syl2anc | ⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1→ 𝐶 ) |
| 13 | 6 2 4 | funcf1 | ⊢ ( 𝜑 → 𝐾 : 𝐶 ⟶ 𝐵 ) |
| 14 | fcofo | ⊢ ( ( 𝐾 : 𝐶 ⟶ 𝐵 ∧ 𝐹 : 𝐵 ⟶ 𝐶 ∧ ( 𝐾 ∘ 𝐹 ) = ( I ↾ 𝐵 ) ) → 𝐾 : 𝐶 –onto→ 𝐵 ) | |
| 15 | 13 7 10 14 | syl3anc | ⊢ ( 𝜑 → 𝐾 : 𝐶 –onto→ 𝐵 ) |
| 16 | 12 15 | jca | ⊢ ( 𝜑 → ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐾 : 𝐶 –onto→ 𝐵 ) ) |