This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If " <. F , G >. is a section of <. K , L >. " in a category of small categories (in a universe), then F is injective, and K is surjective. (Contributed by Zhi Wang, 15-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofidval.i | |- I = ( idFunc ` D ) |
|
| cofidval.b | |- B = ( Base ` D ) |
||
| cofidval.f | |- ( ph -> F ( D Func E ) G ) |
||
| cofidval.k | |- ( ph -> K ( E Func D ) L ) |
||
| cofidval.o | |- ( ph -> ( <. K , L >. o.func <. F , G >. ) = I ) |
||
| cofidf1.c | |- C = ( Base ` E ) |
||
| Assertion | cofidf1 | |- ( ph -> ( F : B -1-1-> C /\ K : C -onto-> B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofidval.i | |- I = ( idFunc ` D ) |
|
| 2 | cofidval.b | |- B = ( Base ` D ) |
|
| 3 | cofidval.f | |- ( ph -> F ( D Func E ) G ) |
|
| 4 | cofidval.k | |- ( ph -> K ( E Func D ) L ) |
|
| 5 | cofidval.o | |- ( ph -> ( <. K , L >. o.func <. F , G >. ) = I ) |
|
| 6 | cofidf1.c | |- C = ( Base ` E ) |
|
| 7 | 2 6 3 | funcf1 | |- ( ph -> F : B --> C ) |
| 8 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 9 | 1 2 3 4 5 8 | cofidval | |- ( ph -> ( ( K o. F ) = ( _I |` B ) /\ ( x e. B , y e. B |-> ( ( ( F ` x ) L ( F ` y ) ) o. ( x G y ) ) ) = ( z e. ( B X. B ) |-> ( _I |` ( ( Hom ` D ) ` z ) ) ) ) ) |
| 10 | 9 | simpld | |- ( ph -> ( K o. F ) = ( _I |` B ) ) |
| 11 | fcof1 | |- ( ( F : B --> C /\ ( K o. F ) = ( _I |` B ) ) -> F : B -1-1-> C ) |
|
| 12 | 7 10 11 | syl2anc | |- ( ph -> F : B -1-1-> C ) |
| 13 | 6 2 4 | funcf1 | |- ( ph -> K : C --> B ) |
| 14 | fcofo | |- ( ( K : C --> B /\ F : B --> C /\ ( K o. F ) = ( _I |` B ) ) -> K : C -onto-> B ) |
|
| 15 | 13 7 10 14 | syl3anc | |- ( ph -> K : C -onto-> B ) |
| 16 | 12 15 | jca | |- ( ph -> ( F : B -1-1-> C /\ K : C -onto-> B ) ) |