This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality of univariate power series coefficient vectors. (Contributed by Stefan O'Rear, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1fval.a | |- A = ( coe1 ` F ) |
|
| coe1f2.b | |- B = ( Base ` P ) |
||
| coe1f2.p | |- P = ( PwSer1 ` R ) |
||
| coe1f2.k | |- K = ( Base ` R ) |
||
| Assertion | coe1f2 | |- ( F e. B -> A : NN0 --> K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1fval.a | |- A = ( coe1 ` F ) |
|
| 2 | coe1f2.b | |- B = ( Base ` P ) |
|
| 3 | coe1f2.p | |- P = ( PwSer1 ` R ) |
|
| 4 | coe1f2.k | |- K = ( Base ` R ) |
|
| 5 | 3 2 4 | psr1basf | |- ( F e. B -> F : ( NN0 ^m 1o ) --> K ) |
| 6 | df1o2 | |- 1o = { (/) } |
|
| 7 | nn0ex | |- NN0 e. _V |
|
| 8 | 0ex | |- (/) e. _V |
|
| 9 | eqid | |- ( x e. NN0 |-> ( 1o X. { x } ) ) = ( x e. NN0 |-> ( 1o X. { x } ) ) |
|
| 10 | 6 7 8 9 | mapsnf1o3 | |- ( x e. NN0 |-> ( 1o X. { x } ) ) : NN0 -1-1-onto-> ( NN0 ^m 1o ) |
| 11 | f1of | |- ( ( x e. NN0 |-> ( 1o X. { x } ) ) : NN0 -1-1-onto-> ( NN0 ^m 1o ) -> ( x e. NN0 |-> ( 1o X. { x } ) ) : NN0 --> ( NN0 ^m 1o ) ) |
|
| 12 | 10 11 | ax-mp | |- ( x e. NN0 |-> ( 1o X. { x } ) ) : NN0 --> ( NN0 ^m 1o ) |
| 13 | fco | |- ( ( F : ( NN0 ^m 1o ) --> K /\ ( x e. NN0 |-> ( 1o X. { x } ) ) : NN0 --> ( NN0 ^m 1o ) ) -> ( F o. ( x e. NN0 |-> ( 1o X. { x } ) ) ) : NN0 --> K ) |
|
| 14 | 5 12 13 | sylancl | |- ( F e. B -> ( F o. ( x e. NN0 |-> ( 1o X. { x } ) ) ) : NN0 --> K ) |
| 15 | 1 2 3 9 | coe1fval3 | |- ( F e. B -> A = ( F o. ( x e. NN0 |-> ( 1o X. { x } ) ) ) ) |
| 16 | 15 | feq1d | |- ( F e. B -> ( A : NN0 --> K <-> ( F o. ( x e. NN0 |-> ( 1o X. { x } ) ) ) : NN0 --> K ) ) |
| 17 | 14 16 | mpbird | |- ( F e. B -> A : NN0 --> K ) |