This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a toset is a toset. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvtsr | |- ( R e. TosetRel -> `' R e. TosetRel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsrps | |- ( R e. TosetRel -> R e. PosetRel ) |
|
| 2 | cnvps | |- ( R e. PosetRel -> `' R e. PosetRel ) |
|
| 3 | 1 2 | syl | |- ( R e. TosetRel -> `' R e. PosetRel ) |
| 4 | eqid | |- dom R = dom R |
|
| 5 | 4 | istsr | |- ( R e. TosetRel <-> ( R e. PosetRel /\ ( dom R X. dom R ) C_ ( R u. `' R ) ) ) |
| 6 | 5 | simprbi | |- ( R e. TosetRel -> ( dom R X. dom R ) C_ ( R u. `' R ) ) |
| 7 | 4 | psrn | |- ( R e. PosetRel -> dom R = ran R ) |
| 8 | 1 7 | syl | |- ( R e. TosetRel -> dom R = ran R ) |
| 9 | 8 | sqxpeqd | |- ( R e. TosetRel -> ( dom R X. dom R ) = ( ran R X. ran R ) ) |
| 10 | psrel | |- ( R e. PosetRel -> Rel R ) |
|
| 11 | 1 10 | syl | |- ( R e. TosetRel -> Rel R ) |
| 12 | dfrel2 | |- ( Rel R <-> `' `' R = R ) |
|
| 13 | 11 12 | sylib | |- ( R e. TosetRel -> `' `' R = R ) |
| 14 | 13 | uneq2d | |- ( R e. TosetRel -> ( `' R u. `' `' R ) = ( `' R u. R ) ) |
| 15 | uncom | |- ( `' R u. R ) = ( R u. `' R ) |
|
| 16 | 14 15 | eqtr2di | |- ( R e. TosetRel -> ( R u. `' R ) = ( `' R u. `' `' R ) ) |
| 17 | 6 9 16 | 3sstr3d | |- ( R e. TosetRel -> ( ran R X. ran R ) C_ ( `' R u. `' `' R ) ) |
| 18 | df-rn | |- ran R = dom `' R |
|
| 19 | 18 | istsr | |- ( `' R e. TosetRel <-> ( `' R e. PosetRel /\ ( ran R X. ran R ) C_ ( `' R u. `' `' R ) ) ) |
| 20 | 3 17 19 | sylanbrc | |- ( R e. TosetRel -> `' R e. TosetRel ) |