This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every element of the power set of A is finite if and only if A is finite. (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwssfi | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ⊆ Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴 ) | |
| 2 | ssfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑥 ⊆ 𝐴 ) → 𝑥 ∈ Fin ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑥 ∈ 𝒫 𝐴 ) → 𝑥 ∈ Fin ) |
| 4 | 3 | ralrimiva | ⊢ ( 𝐴 ∈ Fin → ∀ 𝑥 ∈ 𝒫 𝐴 𝑥 ∈ Fin ) |
| 5 | dfss3 | ⊢ ( 𝒫 𝐴 ⊆ Fin ↔ ∀ 𝑥 ∈ 𝒫 𝐴 𝑥 ∈ Fin ) | |
| 6 | 4 5 | sylibr | ⊢ ( 𝐴 ∈ Fin → 𝒫 𝐴 ⊆ Fin ) |
| 7 | pwidg | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴 ) | |
| 8 | 5 | biimpi | ⊢ ( 𝒫 𝐴 ⊆ Fin → ∀ 𝑥 ∈ 𝒫 𝐴 𝑥 ∈ Fin ) |
| 9 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ Fin ↔ 𝐴 ∈ Fin ) ) | |
| 10 | 9 | rspcva | ⊢ ( ( 𝐴 ∈ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝒫 𝐴 𝑥 ∈ Fin ) → 𝐴 ∈ Fin ) |
| 11 | 7 8 10 | syl2an | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝒫 𝐴 ⊆ Fin ) → 𝐴 ∈ Fin ) |
| 12 | 11 | ex | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝒫 𝐴 ⊆ Fin → 𝐴 ∈ Fin ) ) |
| 13 | 6 12 | impbid2 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ⊆ Fin ) ) |