This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a set is countable, so is its converse. (Contributed by Thierry Arnoux, 29-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvct | ⊢ ( 𝐴 ≼ ω → ◡ 𝐴 ≼ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | ⊢ Rel ◡ 𝐴 | |
| 2 | ctex | ⊢ ( 𝐴 ≼ ω → 𝐴 ∈ V ) | |
| 3 | cnvexg | ⊢ ( 𝐴 ∈ V → ◡ 𝐴 ∈ V ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐴 ≼ ω → ◡ 𝐴 ∈ V ) |
| 5 | cnven | ⊢ ( ( Rel ◡ 𝐴 ∧ ◡ 𝐴 ∈ V ) → ◡ 𝐴 ≈ ◡ ◡ 𝐴 ) | |
| 6 | 1 4 5 | sylancr | ⊢ ( 𝐴 ≼ ω → ◡ 𝐴 ≈ ◡ ◡ 𝐴 ) |
| 7 | cnvcnvss | ⊢ ◡ ◡ 𝐴 ⊆ 𝐴 | |
| 8 | ssdomg | ⊢ ( 𝐴 ∈ V → ( ◡ ◡ 𝐴 ⊆ 𝐴 → ◡ ◡ 𝐴 ≼ 𝐴 ) ) | |
| 9 | 2 7 8 | mpisyl | ⊢ ( 𝐴 ≼ ω → ◡ ◡ 𝐴 ≼ 𝐴 ) |
| 10 | endomtr | ⊢ ( ( ◡ 𝐴 ≈ ◡ ◡ 𝐴 ∧ ◡ ◡ 𝐴 ≼ 𝐴 ) → ◡ 𝐴 ≼ 𝐴 ) | |
| 11 | 6 9 10 | syl2anc | ⊢ ( 𝐴 ≼ ω → ◡ 𝐴 ≼ 𝐴 ) |
| 12 | domtr | ⊢ ( ( ◡ 𝐴 ≼ 𝐴 ∧ 𝐴 ≼ ω ) → ◡ 𝐴 ≼ ω ) | |
| 13 | 11 12 | mpancom | ⊢ ( 𝐴 ≼ ω → ◡ 𝐴 ≼ ω ) |