This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a set is countable, so is its converse. (Contributed by Thierry Arnoux, 29-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvct |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | ||
| 2 | ctex | ||
| 3 | cnvexg | ||
| 4 | 2 3 | syl | |
| 5 | cnven | ||
| 6 | 1 4 5 | sylancr | |
| 7 | cnvcnvss | ||
| 8 | ssdomg | ||
| 9 | 2 7 8 | mpisyl | |
| 10 | endomtr | ||
| 11 | 6 9 10 | syl2anc | |
| 12 | domtr | ||
| 13 | 11 12 | mpancom |