This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a set is countable, so is its converse. (Contributed by Thierry Arnoux, 29-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvct | |- ( A ~<_ _om -> `' A ~<_ _om ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | |- Rel `' A |
|
| 2 | ctex | |- ( A ~<_ _om -> A e. _V ) |
|
| 3 | cnvexg | |- ( A e. _V -> `' A e. _V ) |
|
| 4 | 2 3 | syl | |- ( A ~<_ _om -> `' A e. _V ) |
| 5 | cnven | |- ( ( Rel `' A /\ `' A e. _V ) -> `' A ~~ `' `' A ) |
|
| 6 | 1 4 5 | sylancr | |- ( A ~<_ _om -> `' A ~~ `' `' A ) |
| 7 | cnvcnvss | |- `' `' A C_ A |
|
| 8 | ssdomg | |- ( A e. _V -> ( `' `' A C_ A -> `' `' A ~<_ A ) ) |
|
| 9 | 2 7 8 | mpisyl | |- ( A ~<_ _om -> `' `' A ~<_ A ) |
| 10 | endomtr | |- ( ( `' A ~~ `' `' A /\ `' `' A ~<_ A ) -> `' A ~<_ A ) |
|
| 11 | 6 9 10 | syl2anc | |- ( A ~<_ _om -> `' A ~<_ A ) |
| 12 | domtr | |- ( ( `' A ~<_ A /\ A ~<_ _om ) -> `' A ~<_ _om ) |
|
| 13 | 11 12 | mpancom | |- ( A ~<_ _om -> `' A ~<_ _om ) |