This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express any centralizer as an intersection of singleton centralizers. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzrec.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| cntzrec.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | ||
| Assertion | cntziinsn | ⊢ ( 𝑆 ⊆ 𝐵 → ( 𝑍 ‘ 𝑆 ) = ( 𝐵 ∩ ∩ 𝑥 ∈ 𝑆 ( 𝑍 ‘ { 𝑥 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzrec.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | cntzrec.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | |
| 3 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 4 | 1 3 2 | cntzval | ⊢ ( 𝑆 ⊆ 𝐵 → ( 𝑍 ‘ 𝑆 ) = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) } ) |
| 5 | ssel2 | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) | |
| 6 | 1 3 2 | cntzsnval | ⊢ ( 𝑥 ∈ 𝐵 → ( 𝑍 ‘ { 𝑥 } ) = { 𝑦 ∈ 𝐵 ∣ ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) } ) |
| 7 | 5 6 | syl | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑍 ‘ { 𝑥 } ) = { 𝑦 ∈ 𝐵 ∣ ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) } ) |
| 8 | 7 | iineq2dv | ⊢ ( 𝑆 ⊆ 𝐵 → ∩ 𝑥 ∈ 𝑆 ( 𝑍 ‘ { 𝑥 } ) = ∩ 𝑥 ∈ 𝑆 { 𝑦 ∈ 𝐵 ∣ ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) } ) |
| 9 | 8 | ineq2d | ⊢ ( 𝑆 ⊆ 𝐵 → ( 𝐵 ∩ ∩ 𝑥 ∈ 𝑆 ( 𝑍 ‘ { 𝑥 } ) ) = ( 𝐵 ∩ ∩ 𝑥 ∈ 𝑆 { 𝑦 ∈ 𝐵 ∣ ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) } ) ) |
| 10 | riinrab | ⊢ ( 𝐵 ∩ ∩ 𝑥 ∈ 𝑆 { 𝑦 ∈ 𝐵 ∣ ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) } ) = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) } | |
| 11 | 9 10 | eqtrdi | ⊢ ( 𝑆 ⊆ 𝐵 → ( 𝐵 ∩ ∩ 𝑥 ∈ 𝑆 ( 𝑍 ‘ { 𝑥 } ) ) = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) } ) |
| 12 | 4 11 | eqtr4d | ⊢ ( 𝑆 ⊆ 𝐵 → ( 𝑍 ‘ 𝑆 ) = ( 𝐵 ∩ ∩ 𝑥 ∈ 𝑆 ( 𝑍 ‘ { 𝑥 } ) ) ) |