This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: First level substitution for a centralizer. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzfval.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| cntzfval.p | ⊢ + = ( +g ‘ 𝑀 ) | ||
| cntzfval.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | ||
| Assertion | cntzfval | ⊢ ( 𝑀 ∈ 𝑉 → 𝑍 = ( 𝑠 ∈ 𝒫 𝐵 ↦ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzfval.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | cntzfval.p | ⊢ + = ( +g ‘ 𝑀 ) | |
| 3 | cntzfval.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | |
| 4 | elex | ⊢ ( 𝑀 ∈ 𝑉 → 𝑀 ∈ V ) | |
| 5 | fveq2 | ⊢ ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = ( Base ‘ 𝑀 ) ) | |
| 6 | 5 1 | eqtr4di | ⊢ ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = 𝐵 ) |
| 7 | 6 | pweqd | ⊢ ( 𝑚 = 𝑀 → 𝒫 ( Base ‘ 𝑚 ) = 𝒫 𝐵 ) |
| 8 | fveq2 | ⊢ ( 𝑚 = 𝑀 → ( +g ‘ 𝑚 ) = ( +g ‘ 𝑀 ) ) | |
| 9 | 8 2 | eqtr4di | ⊢ ( 𝑚 = 𝑀 → ( +g ‘ 𝑚 ) = + ) |
| 10 | 9 | oveqd | ⊢ ( 𝑚 = 𝑀 → ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
| 11 | 9 | oveqd | ⊢ ( 𝑚 = 𝑀 → ( 𝑦 ( +g ‘ 𝑚 ) 𝑥 ) = ( 𝑦 + 𝑥 ) ) |
| 12 | 10 11 | eqeq12d | ⊢ ( 𝑚 = 𝑀 → ( ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑚 ) 𝑥 ) ↔ ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
| 13 | 12 | ralbidv | ⊢ ( 𝑚 = 𝑀 → ( ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑚 ) 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
| 14 | 6 13 | rabeqbidv | ⊢ ( 𝑚 = 𝑀 → { 𝑥 ∈ ( Base ‘ 𝑚 ) ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑚 ) 𝑥 ) } = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) |
| 15 | 7 14 | mpteq12dv | ⊢ ( 𝑚 = 𝑀 → ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ { 𝑥 ∈ ( Base ‘ 𝑚 ) ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑚 ) 𝑥 ) } ) = ( 𝑠 ∈ 𝒫 𝐵 ↦ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) ) |
| 16 | df-cntz | ⊢ Cntz = ( 𝑚 ∈ V ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ { 𝑥 ∈ ( Base ‘ 𝑚 ) ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑚 ) 𝑥 ) } ) ) | |
| 17 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 18 | 17 | pwex | ⊢ 𝒫 𝐵 ∈ V |
| 19 | 18 | mptex | ⊢ ( 𝑠 ∈ 𝒫 𝐵 ↦ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) ∈ V |
| 20 | 15 16 19 | fvmpt | ⊢ ( 𝑀 ∈ V → ( Cntz ‘ 𝑀 ) = ( 𝑠 ∈ 𝒫 𝐵 ↦ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) ) |
| 21 | 4 20 | syl | ⊢ ( 𝑀 ∈ 𝑉 → ( Cntz ‘ 𝑀 ) = ( 𝑠 ∈ 𝒫 𝐵 ↦ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) ) |
| 22 | 3 21 | eqtrid | ⊢ ( 𝑀 ∈ 𝑉 → 𝑍 = ( 𝑠 ∈ 𝒫 𝐵 ↦ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) ) |