This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition substitution for a centralizer. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzfval.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| cntzfval.p | ⊢ + = ( +g ‘ 𝑀 ) | ||
| cntzfval.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | ||
| Assertion | cntzval | ⊢ ( 𝑆 ⊆ 𝐵 → ( 𝑍 ‘ 𝑆 ) = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzfval.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | cntzfval.p | ⊢ + = ( +g ‘ 𝑀 ) | |
| 3 | cntzfval.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | |
| 4 | 1 2 3 | cntzfval | ⊢ ( 𝑀 ∈ V → 𝑍 = ( 𝑠 ∈ 𝒫 𝐵 ↦ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) ) |
| 5 | 4 | fveq1d | ⊢ ( 𝑀 ∈ V → ( 𝑍 ‘ 𝑆 ) = ( ( 𝑠 ∈ 𝒫 𝐵 ↦ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) ‘ 𝑆 ) ) |
| 6 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 7 | 6 | elpw2 | ⊢ ( 𝑆 ∈ 𝒫 𝐵 ↔ 𝑆 ⊆ 𝐵 ) |
| 8 | raleq | ⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) | |
| 9 | 8 | rabbidv | ⊢ ( 𝑠 = 𝑆 → { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) |
| 10 | eqid | ⊢ ( 𝑠 ∈ 𝒫 𝐵 ↦ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) = ( 𝑠 ∈ 𝒫 𝐵 ↦ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) | |
| 11 | 6 | rabex | ⊢ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ∈ V |
| 12 | 9 10 11 | fvmpt | ⊢ ( 𝑆 ∈ 𝒫 𝐵 → ( ( 𝑠 ∈ 𝒫 𝐵 ↦ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) ‘ 𝑆 ) = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) |
| 13 | 7 12 | sylbir | ⊢ ( 𝑆 ⊆ 𝐵 → ( ( 𝑠 ∈ 𝒫 𝐵 ↦ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) ‘ 𝑆 ) = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) |
| 14 | 5 13 | sylan9eq | ⊢ ( ( 𝑀 ∈ V ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) |
| 15 | 0fv | ⊢ ( ∅ ‘ 𝑆 ) = ∅ | |
| 16 | fvprc | ⊢ ( ¬ 𝑀 ∈ V → ( Cntz ‘ 𝑀 ) = ∅ ) | |
| 17 | 3 16 | eqtrid | ⊢ ( ¬ 𝑀 ∈ V → 𝑍 = ∅ ) |
| 18 | 17 | fveq1d | ⊢ ( ¬ 𝑀 ∈ V → ( 𝑍 ‘ 𝑆 ) = ( ∅ ‘ 𝑆 ) ) |
| 19 | ssrab2 | ⊢ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ⊆ 𝐵 | |
| 20 | fvprc | ⊢ ( ¬ 𝑀 ∈ V → ( Base ‘ 𝑀 ) = ∅ ) | |
| 21 | 1 20 | eqtrid | ⊢ ( ¬ 𝑀 ∈ V → 𝐵 = ∅ ) |
| 22 | 19 21 | sseqtrid | ⊢ ( ¬ 𝑀 ∈ V → { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ⊆ ∅ ) |
| 23 | ss0 | ⊢ ( { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ⊆ ∅ → { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } = ∅ ) | |
| 24 | 22 23 | syl | ⊢ ( ¬ 𝑀 ∈ V → { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } = ∅ ) |
| 25 | 15 18 24 | 3eqtr4a | ⊢ ( ¬ 𝑀 ∈ V → ( 𝑍 ‘ 𝑆 ) = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) |
| 26 | 25 | adantr | ⊢ ( ( ¬ 𝑀 ∈ V ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) |
| 27 | 14 26 | pm2.61ian | ⊢ ( 𝑆 ⊆ 𝐵 → ( 𝑍 ‘ 𝑆 ) = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) |