This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Special substitution for the centralizer of a singleton. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzfval.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| cntzfval.p | ⊢ + = ( +g ‘ 𝑀 ) | ||
| cntzfval.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | ||
| Assertion | cntzsnval | ⊢ ( 𝑌 ∈ 𝐵 → ( 𝑍 ‘ { 𝑌 } ) = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 + 𝑌 ) = ( 𝑌 + 𝑥 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzfval.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | cntzfval.p | ⊢ + = ( +g ‘ 𝑀 ) | |
| 3 | cntzfval.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | |
| 4 | snssi | ⊢ ( 𝑌 ∈ 𝐵 → { 𝑌 } ⊆ 𝐵 ) | |
| 5 | 1 2 3 | cntzval | ⊢ ( { 𝑌 } ⊆ 𝐵 → ( 𝑍 ‘ { 𝑌 } ) = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ { 𝑌 } ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) |
| 6 | 4 5 | syl | ⊢ ( 𝑌 ∈ 𝐵 → ( 𝑍 ‘ { 𝑌 } ) = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ { 𝑌 } ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) |
| 7 | oveq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑥 + 𝑦 ) = ( 𝑥 + 𝑌 ) ) | |
| 8 | oveq1 | ⊢ ( 𝑦 = 𝑌 → ( 𝑦 + 𝑥 ) = ( 𝑌 + 𝑥 ) ) | |
| 9 | 7 8 | eqeq12d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ↔ ( 𝑥 + 𝑌 ) = ( 𝑌 + 𝑥 ) ) ) |
| 10 | 9 | ralsng | ⊢ ( 𝑌 ∈ 𝐵 → ( ∀ 𝑦 ∈ { 𝑌 } ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ↔ ( 𝑥 + 𝑌 ) = ( 𝑌 + 𝑥 ) ) ) |
| 11 | 10 | rabbidv | ⊢ ( 𝑌 ∈ 𝐵 → { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ { 𝑌 } ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 + 𝑌 ) = ( 𝑌 + 𝑥 ) } ) |
| 12 | 6 11 | eqtrd | ⊢ ( 𝑌 ∈ 𝐵 → ( 𝑍 ‘ { 𝑌 } ) = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 + 𝑌 ) = ( 𝑌 + 𝑥 ) } ) |