This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express any centralizer as an intersection of singleton centralizers. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzrec.b | |- B = ( Base ` M ) |
|
| cntzrec.z | |- Z = ( Cntz ` M ) |
||
| Assertion | cntziinsn | |- ( S C_ B -> ( Z ` S ) = ( B i^i |^|_ x e. S ( Z ` { x } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzrec.b | |- B = ( Base ` M ) |
|
| 2 | cntzrec.z | |- Z = ( Cntz ` M ) |
|
| 3 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 4 | 1 3 2 | cntzval | |- ( S C_ B -> ( Z ` S ) = { y e. B | A. x e. S ( y ( +g ` M ) x ) = ( x ( +g ` M ) y ) } ) |
| 5 | ssel2 | |- ( ( S C_ B /\ x e. S ) -> x e. B ) |
|
| 6 | 1 3 2 | cntzsnval | |- ( x e. B -> ( Z ` { x } ) = { y e. B | ( y ( +g ` M ) x ) = ( x ( +g ` M ) y ) } ) |
| 7 | 5 6 | syl | |- ( ( S C_ B /\ x e. S ) -> ( Z ` { x } ) = { y e. B | ( y ( +g ` M ) x ) = ( x ( +g ` M ) y ) } ) |
| 8 | 7 | iineq2dv | |- ( S C_ B -> |^|_ x e. S ( Z ` { x } ) = |^|_ x e. S { y e. B | ( y ( +g ` M ) x ) = ( x ( +g ` M ) y ) } ) |
| 9 | 8 | ineq2d | |- ( S C_ B -> ( B i^i |^|_ x e. S ( Z ` { x } ) ) = ( B i^i |^|_ x e. S { y e. B | ( y ( +g ` M ) x ) = ( x ( +g ` M ) y ) } ) ) |
| 10 | riinrab | |- ( B i^i |^|_ x e. S { y e. B | ( y ( +g ` M ) x ) = ( x ( +g ` M ) y ) } ) = { y e. B | A. x e. S ( y ( +g ` M ) x ) = ( x ( +g ` M ) y ) } |
|
| 11 | 9 10 | eqtrdi | |- ( S C_ B -> ( B i^i |^|_ x e. S ( Z ` { x } ) ) = { y e. B | A. x e. S ( y ( +g ` M ) x ) = ( x ( +g ` M ) y ) } ) |
| 12 | 4 11 | eqtr4d | |- ( S C_ B -> ( Z ` S ) = ( B i^i |^|_ x e. S ( Z ` { x } ) ) ) |