This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The center of a monoid is a commutative submonoid. (Contributed by Thierry Arnoux, 21-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cntrcmnd.z | ⊢ 𝑍 = ( 𝑀 ↾s ( Cntr ‘ 𝑀 ) ) | |
| Assertion | cntrcmnd | ⊢ ( 𝑀 ∈ Mnd → 𝑍 ∈ CMnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntrcmnd.z | ⊢ 𝑍 = ( 𝑀 ↾s ( Cntr ‘ 𝑀 ) ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 3 | 2 | cntrss | ⊢ ( Cntr ‘ 𝑀 ) ⊆ ( Base ‘ 𝑀 ) |
| 4 | 1 2 | ressbas2 | ⊢ ( ( Cntr ‘ 𝑀 ) ⊆ ( Base ‘ 𝑀 ) → ( Cntr ‘ 𝑀 ) = ( Base ‘ 𝑍 ) ) |
| 5 | 3 4 | mp1i | ⊢ ( 𝑀 ∈ Mnd → ( Cntr ‘ 𝑀 ) = ( Base ‘ 𝑍 ) ) |
| 6 | fvex | ⊢ ( Cntr ‘ 𝑀 ) ∈ V | |
| 7 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 8 | 1 7 | ressplusg | ⊢ ( ( Cntr ‘ 𝑀 ) ∈ V → ( +g ‘ 𝑀 ) = ( +g ‘ 𝑍 ) ) |
| 9 | 6 8 | mp1i | ⊢ ( 𝑀 ∈ Mnd → ( +g ‘ 𝑀 ) = ( +g ‘ 𝑍 ) ) |
| 10 | eqid | ⊢ ( Cntz ‘ 𝑀 ) = ( Cntz ‘ 𝑀 ) | |
| 11 | 2 10 | cntrval | ⊢ ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) ) = ( Cntr ‘ 𝑀 ) |
| 12 | ssid | ⊢ ( Base ‘ 𝑀 ) ⊆ ( Base ‘ 𝑀 ) | |
| 13 | 2 10 | cntzsubm | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( Base ‘ 𝑀 ) ⊆ ( Base ‘ 𝑀 ) ) → ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) ) ∈ ( SubMnd ‘ 𝑀 ) ) |
| 14 | 12 13 | mpan2 | ⊢ ( 𝑀 ∈ Mnd → ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) ) ∈ ( SubMnd ‘ 𝑀 ) ) |
| 15 | 11 14 | eqeltrrid | ⊢ ( 𝑀 ∈ Mnd → ( Cntr ‘ 𝑀 ) ∈ ( SubMnd ‘ 𝑀 ) ) |
| 16 | 1 | submmnd | ⊢ ( ( Cntr ‘ 𝑀 ) ∈ ( SubMnd ‘ 𝑀 ) → 𝑍 ∈ Mnd ) |
| 17 | 15 16 | syl | ⊢ ( 𝑀 ∈ Mnd → 𝑍 ∈ Mnd ) |
| 18 | simp2 | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑥 ∈ ( Cntr ‘ 𝑀 ) ∧ 𝑦 ∈ ( Cntr ‘ 𝑀 ) ) → 𝑥 ∈ ( Cntr ‘ 𝑀 ) ) | |
| 19 | simp3 | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑥 ∈ ( Cntr ‘ 𝑀 ) ∧ 𝑦 ∈ ( Cntr ‘ 𝑀 ) ) → 𝑦 ∈ ( Cntr ‘ 𝑀 ) ) | |
| 20 | 3 19 | sselid | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑥 ∈ ( Cntr ‘ 𝑀 ) ∧ 𝑦 ∈ ( Cntr ‘ 𝑀 ) ) → 𝑦 ∈ ( Base ‘ 𝑀 ) ) |
| 21 | eqid | ⊢ ( Cntr ‘ 𝑀 ) = ( Cntr ‘ 𝑀 ) | |
| 22 | 2 7 21 | cntri | ⊢ ( ( 𝑥 ∈ ( Cntr ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) |
| 23 | 18 20 22 | syl2anc | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑥 ∈ ( Cntr ‘ 𝑀 ) ∧ 𝑦 ∈ ( Cntr ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) |
| 24 | 5 9 17 23 | iscmnd | ⊢ ( 𝑀 ∈ Mnd → 𝑍 ∈ CMnd ) |