This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The center of a monoid is a commutative submonoid. (Contributed by Thierry Arnoux, 21-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cntrcmnd.z | |- Z = ( M |`s ( Cntr ` M ) ) |
|
| Assertion | cntrcmnd | |- ( M e. Mnd -> Z e. CMnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntrcmnd.z | |- Z = ( M |`s ( Cntr ` M ) ) |
|
| 2 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 3 | 2 | cntrss | |- ( Cntr ` M ) C_ ( Base ` M ) |
| 4 | 1 2 | ressbas2 | |- ( ( Cntr ` M ) C_ ( Base ` M ) -> ( Cntr ` M ) = ( Base ` Z ) ) |
| 5 | 3 4 | mp1i | |- ( M e. Mnd -> ( Cntr ` M ) = ( Base ` Z ) ) |
| 6 | fvex | |- ( Cntr ` M ) e. _V |
|
| 7 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 8 | 1 7 | ressplusg | |- ( ( Cntr ` M ) e. _V -> ( +g ` M ) = ( +g ` Z ) ) |
| 9 | 6 8 | mp1i | |- ( M e. Mnd -> ( +g ` M ) = ( +g ` Z ) ) |
| 10 | eqid | |- ( Cntz ` M ) = ( Cntz ` M ) |
|
| 11 | 2 10 | cntrval | |- ( ( Cntz ` M ) ` ( Base ` M ) ) = ( Cntr ` M ) |
| 12 | ssid | |- ( Base ` M ) C_ ( Base ` M ) |
|
| 13 | 2 10 | cntzsubm | |- ( ( M e. Mnd /\ ( Base ` M ) C_ ( Base ` M ) ) -> ( ( Cntz ` M ) ` ( Base ` M ) ) e. ( SubMnd ` M ) ) |
| 14 | 12 13 | mpan2 | |- ( M e. Mnd -> ( ( Cntz ` M ) ` ( Base ` M ) ) e. ( SubMnd ` M ) ) |
| 15 | 11 14 | eqeltrrid | |- ( M e. Mnd -> ( Cntr ` M ) e. ( SubMnd ` M ) ) |
| 16 | 1 | submmnd | |- ( ( Cntr ` M ) e. ( SubMnd ` M ) -> Z e. Mnd ) |
| 17 | 15 16 | syl | |- ( M e. Mnd -> Z e. Mnd ) |
| 18 | simp2 | |- ( ( M e. Mnd /\ x e. ( Cntr ` M ) /\ y e. ( Cntr ` M ) ) -> x e. ( Cntr ` M ) ) |
|
| 19 | simp3 | |- ( ( M e. Mnd /\ x e. ( Cntr ` M ) /\ y e. ( Cntr ` M ) ) -> y e. ( Cntr ` M ) ) |
|
| 20 | 3 19 | sselid | |- ( ( M e. Mnd /\ x e. ( Cntr ` M ) /\ y e. ( Cntr ` M ) ) -> y e. ( Base ` M ) ) |
| 21 | eqid | |- ( Cntr ` M ) = ( Cntr ` M ) |
|
| 22 | 2 7 21 | cntri | |- ( ( x e. ( Cntr ` M ) /\ y e. ( Base ` M ) ) -> ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) ) |
| 23 | 18 20 22 | syl2anc | |- ( ( M e. Mnd /\ x e. ( Cntr ` M ) /\ y e. ( Cntr ` M ) ) -> ( x ( +g ` M ) y ) = ( y ( +g ` M ) x ) ) |
| 24 | 5 9 17 23 | iscmnd | |- ( M e. Mnd -> Z e. CMnd ) |