This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function mapping the points in a topology J to the set of all functions from J to topology K continuous at that point. (Contributed by NM, 17-Oct-2006) (Revised by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnpfval | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 CnP 𝐾 ) = ( 𝑥 ∈ 𝑋 ↦ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑤 ∈ 𝐾 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑤 → ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ ( 𝑓 “ 𝑣 ) ⊆ 𝑤 ) ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnp | ⊢ CnP = ( 𝑗 ∈ Top , 𝑘 ∈ Top ↦ ( 𝑥 ∈ ∪ 𝑗 ↦ { 𝑓 ∈ ( ∪ 𝑘 ↑m ∪ 𝑗 ) ∣ ∀ 𝑤 ∈ 𝑘 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑤 → ∃ 𝑣 ∈ 𝑗 ( 𝑥 ∈ 𝑣 ∧ ( 𝑓 “ 𝑣 ) ⊆ 𝑤 ) ) } ) ) | |
| 2 | 1 | a1i | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → CnP = ( 𝑗 ∈ Top , 𝑘 ∈ Top ↦ ( 𝑥 ∈ ∪ 𝑗 ↦ { 𝑓 ∈ ( ∪ 𝑘 ↑m ∪ 𝑗 ) ∣ ∀ 𝑤 ∈ 𝑘 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑤 → ∃ 𝑣 ∈ 𝑗 ( 𝑥 ∈ 𝑣 ∧ ( 𝑓 “ 𝑣 ) ⊆ 𝑤 ) ) } ) ) ) |
| 3 | simprl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → 𝑗 = 𝐽 ) | |
| 4 | 3 | unieqd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ∪ 𝑗 = ∪ 𝐽 ) |
| 5 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 6 | 5 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → 𝑋 = ∪ 𝐽 ) |
| 7 | 4 6 | eqtr4d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ∪ 𝑗 = 𝑋 ) |
| 8 | simprr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → 𝑘 = 𝐾 ) | |
| 9 | 8 | unieqd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ∪ 𝑘 = ∪ 𝐾 ) |
| 10 | toponuni | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 = ∪ 𝐾 ) | |
| 11 | 10 | ad2antlr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → 𝑌 = ∪ 𝐾 ) |
| 12 | 9 11 | eqtr4d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ∪ 𝑘 = 𝑌 ) |
| 13 | 12 7 | oveq12d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ( ∪ 𝑘 ↑m ∪ 𝑗 ) = ( 𝑌 ↑m 𝑋 ) ) |
| 14 | 3 | rexeqdv | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ( ∃ 𝑣 ∈ 𝑗 ( 𝑥 ∈ 𝑣 ∧ ( 𝑓 “ 𝑣 ) ⊆ 𝑤 ) ↔ ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ ( 𝑓 “ 𝑣 ) ⊆ 𝑤 ) ) ) |
| 15 | 14 | imbi2d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ( ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑤 → ∃ 𝑣 ∈ 𝑗 ( 𝑥 ∈ 𝑣 ∧ ( 𝑓 “ 𝑣 ) ⊆ 𝑤 ) ) ↔ ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑤 → ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ ( 𝑓 “ 𝑣 ) ⊆ 𝑤 ) ) ) ) |
| 16 | 8 15 | raleqbidv | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ( ∀ 𝑤 ∈ 𝑘 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑤 → ∃ 𝑣 ∈ 𝑗 ( 𝑥 ∈ 𝑣 ∧ ( 𝑓 “ 𝑣 ) ⊆ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐾 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑤 → ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ ( 𝑓 “ 𝑣 ) ⊆ 𝑤 ) ) ) ) |
| 17 | 13 16 | rabeqbidv | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → { 𝑓 ∈ ( ∪ 𝑘 ↑m ∪ 𝑗 ) ∣ ∀ 𝑤 ∈ 𝑘 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑤 → ∃ 𝑣 ∈ 𝑗 ( 𝑥 ∈ 𝑣 ∧ ( 𝑓 “ 𝑣 ) ⊆ 𝑤 ) ) } = { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑤 ∈ 𝐾 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑤 → ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ ( 𝑓 “ 𝑣 ) ⊆ 𝑤 ) ) } ) |
| 18 | 7 17 | mpteq12dv | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) ) → ( 𝑥 ∈ ∪ 𝑗 ↦ { 𝑓 ∈ ( ∪ 𝑘 ↑m ∪ 𝑗 ) ∣ ∀ 𝑤 ∈ 𝑘 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑤 → ∃ 𝑣 ∈ 𝑗 ( 𝑥 ∈ 𝑣 ∧ ( 𝑓 “ 𝑣 ) ⊆ 𝑤 ) ) } ) = ( 𝑥 ∈ 𝑋 ↦ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑤 ∈ 𝐾 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑤 → ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ ( 𝑓 “ 𝑣 ) ⊆ 𝑤 ) ) } ) ) |
| 19 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 20 | 19 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → 𝐽 ∈ Top ) |
| 21 | topontop | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝐾 ∈ Top ) | |
| 22 | 21 | adantl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → 𝐾 ∈ Top ) |
| 23 | ovex | ⊢ ( 𝑌 ↑m 𝑋 ) ∈ V | |
| 24 | ssrab2 | ⊢ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑤 ∈ 𝐾 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑤 → ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ ( 𝑓 “ 𝑣 ) ⊆ 𝑤 ) ) } ⊆ ( 𝑌 ↑m 𝑋 ) | |
| 25 | 23 24 | elpwi2 | ⊢ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑤 ∈ 𝐾 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑤 → ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ ( 𝑓 “ 𝑣 ) ⊆ 𝑤 ) ) } ∈ 𝒫 ( 𝑌 ↑m 𝑋 ) |
| 26 | 25 | a1i | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑥 ∈ 𝑋 ) → { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑤 ∈ 𝐾 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑤 → ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ ( 𝑓 “ 𝑣 ) ⊆ 𝑤 ) ) } ∈ 𝒫 ( 𝑌 ↑m 𝑋 ) ) |
| 27 | 26 | fmpttd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑥 ∈ 𝑋 ↦ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑤 ∈ 𝐾 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑤 → ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ ( 𝑓 “ 𝑣 ) ⊆ 𝑤 ) ) } ) : 𝑋 ⟶ 𝒫 ( 𝑌 ↑m 𝑋 ) ) |
| 28 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) | |
| 29 | 28 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → 𝑋 ∈ 𝐽 ) |
| 30 | 23 | pwex | ⊢ 𝒫 ( 𝑌 ↑m 𝑋 ) ∈ V |
| 31 | 30 | a1i | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → 𝒫 ( 𝑌 ↑m 𝑋 ) ∈ V ) |
| 32 | fex2 | ⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑤 ∈ 𝐾 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑤 → ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ ( 𝑓 “ 𝑣 ) ⊆ 𝑤 ) ) } ) : 𝑋 ⟶ 𝒫 ( 𝑌 ↑m 𝑋 ) ∧ 𝑋 ∈ 𝐽 ∧ 𝒫 ( 𝑌 ↑m 𝑋 ) ∈ V ) → ( 𝑥 ∈ 𝑋 ↦ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑤 ∈ 𝐾 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑤 → ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ ( 𝑓 “ 𝑣 ) ⊆ 𝑤 ) ) } ) ∈ V ) | |
| 33 | 27 29 31 32 | syl3anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑥 ∈ 𝑋 ↦ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑤 ∈ 𝐾 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑤 → ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ ( 𝑓 “ 𝑣 ) ⊆ 𝑤 ) ) } ) ∈ V ) |
| 34 | 2 18 20 22 33 | ovmpod | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 CnP 𝐾 ) = ( 𝑥 ∈ 𝑋 ↦ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑤 ∈ 𝐾 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑤 → ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑣 ∧ ( 𝑓 “ 𝑣 ) ⊆ 𝑤 ) ) } ) ) |