This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a function on two topologies whose value is the set of continuous mappings at a specified point in the first topology. Based on Theorem 7.2(g) of Munkres p. 107. (Contributed by NM, 17-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cnp | ⊢ CnP = ( 𝑗 ∈ Top , 𝑘 ∈ Top ↦ ( 𝑥 ∈ ∪ 𝑗 ↦ { 𝑓 ∈ ( ∪ 𝑘 ↑m ∪ 𝑗 ) ∣ ∀ 𝑦 ∈ 𝑘 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑦 → ∃ 𝑔 ∈ 𝑗 ( 𝑥 ∈ 𝑔 ∧ ( 𝑓 “ 𝑔 ) ⊆ 𝑦 ) ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccnp | ⊢ CnP | |
| 1 | vj | ⊢ 𝑗 | |
| 2 | ctop | ⊢ Top | |
| 3 | vk | ⊢ 𝑘 | |
| 4 | vx | ⊢ 𝑥 | |
| 5 | 1 | cv | ⊢ 𝑗 |
| 6 | 5 | cuni | ⊢ ∪ 𝑗 |
| 7 | vf | ⊢ 𝑓 | |
| 8 | 3 | cv | ⊢ 𝑘 |
| 9 | 8 | cuni | ⊢ ∪ 𝑘 |
| 10 | cmap | ⊢ ↑m | |
| 11 | 9 6 10 | co | ⊢ ( ∪ 𝑘 ↑m ∪ 𝑗 ) |
| 12 | vy | ⊢ 𝑦 | |
| 13 | 7 | cv | ⊢ 𝑓 |
| 14 | 4 | cv | ⊢ 𝑥 |
| 15 | 14 13 | cfv | ⊢ ( 𝑓 ‘ 𝑥 ) |
| 16 | 12 | cv | ⊢ 𝑦 |
| 17 | 15 16 | wcel | ⊢ ( 𝑓 ‘ 𝑥 ) ∈ 𝑦 |
| 18 | vg | ⊢ 𝑔 | |
| 19 | 18 | cv | ⊢ 𝑔 |
| 20 | 14 19 | wcel | ⊢ 𝑥 ∈ 𝑔 |
| 21 | 13 19 | cima | ⊢ ( 𝑓 “ 𝑔 ) |
| 22 | 21 16 | wss | ⊢ ( 𝑓 “ 𝑔 ) ⊆ 𝑦 |
| 23 | 20 22 | wa | ⊢ ( 𝑥 ∈ 𝑔 ∧ ( 𝑓 “ 𝑔 ) ⊆ 𝑦 ) |
| 24 | 23 18 5 | wrex | ⊢ ∃ 𝑔 ∈ 𝑗 ( 𝑥 ∈ 𝑔 ∧ ( 𝑓 “ 𝑔 ) ⊆ 𝑦 ) |
| 25 | 17 24 | wi | ⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑦 → ∃ 𝑔 ∈ 𝑗 ( 𝑥 ∈ 𝑔 ∧ ( 𝑓 “ 𝑔 ) ⊆ 𝑦 ) ) |
| 26 | 25 12 8 | wral | ⊢ ∀ 𝑦 ∈ 𝑘 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑦 → ∃ 𝑔 ∈ 𝑗 ( 𝑥 ∈ 𝑔 ∧ ( 𝑓 “ 𝑔 ) ⊆ 𝑦 ) ) |
| 27 | 26 7 11 | crab | ⊢ { 𝑓 ∈ ( ∪ 𝑘 ↑m ∪ 𝑗 ) ∣ ∀ 𝑦 ∈ 𝑘 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑦 → ∃ 𝑔 ∈ 𝑗 ( 𝑥 ∈ 𝑔 ∧ ( 𝑓 “ 𝑔 ) ⊆ 𝑦 ) ) } |
| 28 | 4 6 27 | cmpt | ⊢ ( 𝑥 ∈ ∪ 𝑗 ↦ { 𝑓 ∈ ( ∪ 𝑘 ↑m ∪ 𝑗 ) ∣ ∀ 𝑦 ∈ 𝑘 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑦 → ∃ 𝑔 ∈ 𝑗 ( 𝑥 ∈ 𝑔 ∧ ( 𝑓 “ 𝑔 ) ⊆ 𝑦 ) ) } ) |
| 29 | 1 3 2 2 28 | cmpo | ⊢ ( 𝑗 ∈ Top , 𝑘 ∈ Top ↦ ( 𝑥 ∈ ∪ 𝑗 ↦ { 𝑓 ∈ ( ∪ 𝑘 ↑m ∪ 𝑗 ) ∣ ∀ 𝑦 ∈ 𝑘 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑦 → ∃ 𝑔 ∈ 𝑗 ( 𝑥 ∈ 𝑔 ∧ ( 𝑓 “ 𝑔 ) ⊆ 𝑦 ) ) } ) ) |
| 30 | 0 29 | wceq | ⊢ CnP = ( 𝑗 ∈ Top , 𝑘 ∈ Top ↦ ( 𝑥 ∈ ∪ 𝑗 ↦ { 𝑓 ∈ ( ∪ 𝑘 ↑m ∪ 𝑗 ) ∣ ∀ 𝑦 ∈ 𝑘 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑦 → ∃ 𝑔 ∈ 𝑗 ( 𝑥 ∈ 𝑔 ∧ ( 𝑓 “ 𝑔 ) ⊆ 𝑦 ) ) } ) ) |