This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vector subtraction operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnnvm.6 | ⊢ 𝑈 = 〈 〈 + , · 〉 , abs 〉 | |
| Assertion | cnnvm | ⊢ − = ( −𝑣 ‘ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnnvm.6 | ⊢ 𝑈 = 〈 〈 + , · 〉 , abs 〉 | |
| 2 | mulm1 | ⊢ ( 𝑦 ∈ ℂ → ( - 1 · 𝑦 ) = - 𝑦 ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( - 1 · 𝑦 ) = - 𝑦 ) |
| 4 | 3 | oveq2d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + ( - 1 · 𝑦 ) ) = ( 𝑥 + - 𝑦 ) ) |
| 5 | negsub | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + - 𝑦 ) = ( 𝑥 − 𝑦 ) ) | |
| 6 | 4 5 | eqtr2d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 − 𝑦 ) = ( 𝑥 + ( - 1 · 𝑦 ) ) ) |
| 7 | 6 | mpoeq3ia | ⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 − 𝑦 ) ) = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + ( - 1 · 𝑦 ) ) ) |
| 8 | subf | ⊢ − : ( ℂ × ℂ ) ⟶ ℂ | |
| 9 | ffn | ⊢ ( − : ( ℂ × ℂ ) ⟶ ℂ → − Fn ( ℂ × ℂ ) ) | |
| 10 | 8 9 | ax-mp | ⊢ − Fn ( ℂ × ℂ ) |
| 11 | fnov | ⊢ ( − Fn ( ℂ × ℂ ) ↔ − = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 − 𝑦 ) ) ) | |
| 12 | 10 11 | mpbi | ⊢ − = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 − 𝑦 ) ) |
| 13 | 1 | cnnv | ⊢ 𝑈 ∈ NrmCVec |
| 14 | 1 | cnnvba | ⊢ ℂ = ( BaseSet ‘ 𝑈 ) |
| 15 | 1 | cnnvg | ⊢ + = ( +𝑣 ‘ 𝑈 ) |
| 16 | 1 | cnnvs | ⊢ · = ( ·𝑠OLD ‘ 𝑈 ) |
| 17 | eqid | ⊢ ( −𝑣 ‘ 𝑈 ) = ( −𝑣 ‘ 𝑈 ) | |
| 18 | 14 15 16 17 | nvmfval | ⊢ ( 𝑈 ∈ NrmCVec → ( −𝑣 ‘ 𝑈 ) = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + ( - 1 · 𝑦 ) ) ) ) |
| 19 | 13 18 | ax-mp | ⊢ ( −𝑣 ‘ 𝑈 ) = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + ( - 1 · 𝑦 ) ) ) |
| 20 | 7 12 19 | 3eqtr4i | ⊢ − = ( −𝑣 ‘ 𝑈 ) |