This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vector subtraction operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnnvm.6 | |- U = <. <. + , x. >. , abs >. |
|
| Assertion | cnnvm | |- - = ( -v ` U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnnvm.6 | |- U = <. <. + , x. >. , abs >. |
|
| 2 | mulm1 | |- ( y e. CC -> ( -u 1 x. y ) = -u y ) |
|
| 3 | 2 | adantl | |- ( ( x e. CC /\ y e. CC ) -> ( -u 1 x. y ) = -u y ) |
| 4 | 3 | oveq2d | |- ( ( x e. CC /\ y e. CC ) -> ( x + ( -u 1 x. y ) ) = ( x + -u y ) ) |
| 5 | negsub | |- ( ( x e. CC /\ y e. CC ) -> ( x + -u y ) = ( x - y ) ) |
|
| 6 | 4 5 | eqtr2d | |- ( ( x e. CC /\ y e. CC ) -> ( x - y ) = ( x + ( -u 1 x. y ) ) ) |
| 7 | 6 | mpoeq3ia | |- ( x e. CC , y e. CC |-> ( x - y ) ) = ( x e. CC , y e. CC |-> ( x + ( -u 1 x. y ) ) ) |
| 8 | subf | |- - : ( CC X. CC ) --> CC |
|
| 9 | ffn | |- ( - : ( CC X. CC ) --> CC -> - Fn ( CC X. CC ) ) |
|
| 10 | 8 9 | ax-mp | |- - Fn ( CC X. CC ) |
| 11 | fnov | |- ( - Fn ( CC X. CC ) <-> - = ( x e. CC , y e. CC |-> ( x - y ) ) ) |
|
| 12 | 10 11 | mpbi | |- - = ( x e. CC , y e. CC |-> ( x - y ) ) |
| 13 | 1 | cnnv | |- U e. NrmCVec |
| 14 | 1 | cnnvba | |- CC = ( BaseSet ` U ) |
| 15 | 1 | cnnvg | |- + = ( +v ` U ) |
| 16 | 1 | cnnvs | |- x. = ( .sOLD ` U ) |
| 17 | eqid | |- ( -v ` U ) = ( -v ` U ) |
|
| 18 | 14 15 16 17 | nvmfval | |- ( U e. NrmCVec -> ( -v ` U ) = ( x e. CC , y e. CC |-> ( x + ( -u 1 x. y ) ) ) ) |
| 19 | 13 18 | ax-mp | |- ( -v ` U ) = ( x e. CC , y e. CC |-> ( x + ( -u 1 x. y ) ) ) |
| 20 | 7 12 19 | 3eqtr4i | |- - = ( -v ` U ) |