This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of a curried function with a one-arg function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmptk1.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| cnmptk1.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| cnmptk1.l | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) | ||
| cnmptk1.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) | ||
| cnmptk1.b | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∈ ( 𝐿 Cn 𝑀 ) ) | ||
| cnmptk1.c | ⊢ ( 𝑧 = 𝐴 → 𝐵 = 𝐶 ) | ||
| Assertion | cnmptk1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) ∈ ( 𝐽 Cn ( 𝑀 ↑ko 𝐾 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptk1.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | cnmptk1.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 3 | cnmptk1.l | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) | |
| 4 | cnmptk1.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) | |
| 5 | cnmptk1.b | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∈ ( 𝐿 Cn 𝑀 ) ) | |
| 6 | cnmptk1.c | ⊢ ( 𝑧 = 𝐴 → 𝐵 = 𝐶 ) | |
| 7 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 8 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) |
| 9 | topontop | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝐾 ∈ Top ) | |
| 10 | 2 9 | syl | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 11 | topontop | ⊢ ( 𝐿 ∈ ( TopOn ‘ 𝑍 ) → 𝐿 ∈ Top ) | |
| 12 | 3 11 | syl | ⊢ ( 𝜑 → 𝐿 ∈ Top ) |
| 13 | eqid | ⊢ ( 𝐿 ↑ko 𝐾 ) = ( 𝐿 ↑ko 𝐾 ) | |
| 14 | 13 | xkotopon | ⊢ ( ( 𝐾 ∈ Top ∧ 𝐿 ∈ Top ) → ( 𝐿 ↑ko 𝐾 ) ∈ ( TopOn ‘ ( 𝐾 Cn 𝐿 ) ) ) |
| 15 | 10 12 14 | syl2anc | ⊢ ( 𝜑 → ( 𝐿 ↑ko 𝐾 ) ∈ ( TopOn ‘ ( 𝐾 Cn 𝐿 ) ) ) |
| 16 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐿 ↑ko 𝐾 ) ∈ ( TopOn ‘ ( 𝐾 Cn 𝐿 ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) : 𝑋 ⟶ ( 𝐾 Cn 𝐿 ) ) | |
| 17 | 1 15 4 16 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) : 𝑋 ⟶ ( 𝐾 Cn 𝐿 ) ) |
| 18 | 17 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( 𝐾 Cn 𝐿 ) ) |
| 19 | cnf2 | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐿 ∈ ( TopOn ‘ 𝑍 ) ∧ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( 𝐾 Cn 𝐿 ) ) → ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) : 𝑌 ⟶ 𝑍 ) | |
| 20 | 7 8 18 19 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) : 𝑌 ⟶ 𝑍 ) |
| 21 | eqid | ⊢ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) = ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) | |
| 22 | 21 | fmpt | ⊢ ( ∀ 𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 ↔ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) : 𝑌 ⟶ 𝑍 ) |
| 23 | 20 22 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑌 𝐴 ∈ 𝑍 ) |
| 24 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) = ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) | |
| 25 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) = ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ) | |
| 26 | 23 24 25 6 | fmptcof | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) = ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) |
| 27 | 26 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) ) |
| 28 | 10 5 | xkoco2cn | ⊢ ( 𝜑 → ( 𝑤 ∈ ( 𝐾 Cn 𝐿 ) ↦ ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ 𝑤 ) ) ∈ ( ( 𝐿 ↑ko 𝐾 ) Cn ( 𝑀 ↑ko 𝐾 ) ) ) |
| 29 | coeq2 | ⊢ ( 𝑤 = ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) → ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ 𝑤 ) = ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ) | |
| 30 | 1 4 15 28 29 | cnmpt11 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝑧 ∈ 𝑍 ↦ 𝐵 ) ∘ ( 𝑦 ∈ 𝑌 ↦ 𝐴 ) ) ) ∈ ( 𝐽 Cn ( 𝑀 ↑ko 𝐾 ) ) ) |
| 31 | 27 30 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) ∈ ( 𝐽 Cn ( 𝑀 ↑ko 𝐾 ) ) ) |