This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Continuity of the metric function; analogue of cnmpt12f which cannot be used directly because D is not necessarily a function. (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmpt1ds.d | |- D = ( dist ` G ) |
|
| cnmpt1ds.j | |- J = ( TopOpen ` G ) |
||
| cnmpt1ds.r | |- R = ( topGen ` ran (,) ) |
||
| cnmpt1ds.g | |- ( ph -> G e. MetSp ) |
||
| cnmpt1ds.k | |- ( ph -> K e. ( TopOn ` X ) ) |
||
| cnmpt1ds.a | |- ( ph -> ( x e. X |-> A ) e. ( K Cn J ) ) |
||
| cnmpt1ds.b | |- ( ph -> ( x e. X |-> B ) e. ( K Cn J ) ) |
||
| Assertion | cnmpt1ds | |- ( ph -> ( x e. X |-> ( A D B ) ) e. ( K Cn R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt1ds.d | |- D = ( dist ` G ) |
|
| 2 | cnmpt1ds.j | |- J = ( TopOpen ` G ) |
|
| 3 | cnmpt1ds.r | |- R = ( topGen ` ran (,) ) |
|
| 4 | cnmpt1ds.g | |- ( ph -> G e. MetSp ) |
|
| 5 | cnmpt1ds.k | |- ( ph -> K e. ( TopOn ` X ) ) |
|
| 6 | cnmpt1ds.a | |- ( ph -> ( x e. X |-> A ) e. ( K Cn J ) ) |
|
| 7 | cnmpt1ds.b | |- ( ph -> ( x e. X |-> B ) e. ( K Cn J ) ) |
|
| 8 | mstps | |- ( G e. MetSp -> G e. TopSp ) |
|
| 9 | 4 8 | syl | |- ( ph -> G e. TopSp ) |
| 10 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 11 | 10 2 | istps | |- ( G e. TopSp <-> J e. ( TopOn ` ( Base ` G ) ) ) |
| 12 | 9 11 | sylib | |- ( ph -> J e. ( TopOn ` ( Base ` G ) ) ) |
| 13 | cnf2 | |- ( ( K e. ( TopOn ` X ) /\ J e. ( TopOn ` ( Base ` G ) ) /\ ( x e. X |-> A ) e. ( K Cn J ) ) -> ( x e. X |-> A ) : X --> ( Base ` G ) ) |
|
| 14 | 5 12 6 13 | syl3anc | |- ( ph -> ( x e. X |-> A ) : X --> ( Base ` G ) ) |
| 15 | 14 | fvmptelcdm | |- ( ( ph /\ x e. X ) -> A e. ( Base ` G ) ) |
| 16 | cnf2 | |- ( ( K e. ( TopOn ` X ) /\ J e. ( TopOn ` ( Base ` G ) ) /\ ( x e. X |-> B ) e. ( K Cn J ) ) -> ( x e. X |-> B ) : X --> ( Base ` G ) ) |
|
| 17 | 5 12 7 16 | syl3anc | |- ( ph -> ( x e. X |-> B ) : X --> ( Base ` G ) ) |
| 18 | 17 | fvmptelcdm | |- ( ( ph /\ x e. X ) -> B e. ( Base ` G ) ) |
| 19 | 15 18 | ovresd | |- ( ( ph /\ x e. X ) -> ( A ( D |` ( ( Base ` G ) X. ( Base ` G ) ) ) B ) = ( A D B ) ) |
| 20 | 19 | mpteq2dva | |- ( ph -> ( x e. X |-> ( A ( D |` ( ( Base ` G ) X. ( Base ` G ) ) ) B ) ) = ( x e. X |-> ( A D B ) ) ) |
| 21 | 10 1 2 3 | msdcn | |- ( G e. MetSp -> ( D |` ( ( Base ` G ) X. ( Base ` G ) ) ) e. ( ( J tX J ) Cn R ) ) |
| 22 | 4 21 | syl | |- ( ph -> ( D |` ( ( Base ` G ) X. ( Base ` G ) ) ) e. ( ( J tX J ) Cn R ) ) |
| 23 | 5 6 7 22 | cnmpt12f | |- ( ph -> ( x e. X |-> ( A ( D |` ( ( Base ` G ) X. ( Base ` G ) ) ) B ) ) e. ( K Cn R ) ) |
| 24 | 20 23 | eqeltrrd | |- ( ph -> ( x e. X |-> ( A D B ) ) e. ( K Cn R ) ) |