This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | msdcn.x | ⊢ 𝑋 = ( Base ‘ 𝑀 ) | |
| msdcn.d | ⊢ 𝐷 = ( dist ‘ 𝑀 ) | ||
| msdcn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑀 ) | ||
| msdcn.2 | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | ||
| Assertion | msdcn | ⊢ ( 𝑀 ∈ MetSp → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | msdcn.x | ⊢ 𝑋 = ( Base ‘ 𝑀 ) | |
| 2 | msdcn.d | ⊢ 𝐷 = ( dist ‘ 𝑀 ) | |
| 3 | msdcn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑀 ) | |
| 4 | msdcn.2 | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | |
| 5 | 1 2 | msmet2 | ⊢ ( 𝑀 ∈ MetSp → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ∈ ( Met ‘ 𝑋 ) ) |
| 6 | eqid | ⊢ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) | |
| 7 | 6 4 | metdcn2 | ⊢ ( ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ∈ ( Met ‘ 𝑋 ) → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ∈ ( ( ( MetOpen ‘ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) ×t ( MetOpen ‘ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) ) Cn 𝐾 ) ) |
| 8 | 5 7 | syl | ⊢ ( 𝑀 ∈ MetSp → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ∈ ( ( ( MetOpen ‘ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) ×t ( MetOpen ‘ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) ) Cn 𝐾 ) ) |
| 9 | 2 | reseq1i | ⊢ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) |
| 10 | 3 1 9 | mstopn | ⊢ ( 𝑀 ∈ MetSp → 𝐽 = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) ) |
| 11 | 10 10 | oveq12d | ⊢ ( 𝑀 ∈ MetSp → ( 𝐽 ×t 𝐽 ) = ( ( MetOpen ‘ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) ×t ( MetOpen ‘ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) ) ) |
| 12 | 11 | oveq1d | ⊢ ( 𝑀 ∈ MetSp → ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) = ( ( ( MetOpen ‘ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) ×t ( MetOpen ‘ ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ) ) Cn 𝐾 ) ) |
| 13 | 8 12 | eleqtrrd | ⊢ ( 𝑀 ∈ MetSp → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |