This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absolute value of differences around common element. (Contributed by FL, 9-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abs3dif | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) + ( abs ‘ ( 𝐶 − 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | npncan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐶 ) + ( 𝐶 − 𝐵 ) ) = ( 𝐴 − 𝐵 ) ) | |
| 2 | 1 | 3com23 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐶 ) + ( 𝐶 − 𝐵 ) ) = ( 𝐴 − 𝐵 ) ) |
| 3 | 2 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( abs ‘ ( ( 𝐴 − 𝐶 ) + ( 𝐶 − 𝐵 ) ) ) = ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
| 4 | subcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − 𝐶 ) ∈ ℂ ) | |
| 5 | 4 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − 𝐶 ) ∈ ℂ ) |
| 6 | subcl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐶 − 𝐵 ) ∈ ℂ ) | |
| 7 | 6 | ancoms | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 − 𝐵 ) ∈ ℂ ) |
| 8 | 7 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 − 𝐵 ) ∈ ℂ ) |
| 9 | abstri | ⊢ ( ( ( 𝐴 − 𝐶 ) ∈ ℂ ∧ ( 𝐶 − 𝐵 ) ∈ ℂ ) → ( abs ‘ ( ( 𝐴 − 𝐶 ) + ( 𝐶 − 𝐵 ) ) ) ≤ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) + ( abs ‘ ( 𝐶 − 𝐵 ) ) ) ) | |
| 10 | 5 8 9 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( abs ‘ ( ( 𝐴 − 𝐶 ) + ( 𝐶 − 𝐵 ) ) ) ≤ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) + ( abs ‘ ( 𝐶 − 𝐵 ) ) ) ) |
| 11 | 3 10 | eqbrtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) + ( abs ‘ ( 𝐶 − 𝐵 ) ) ) ) |