This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every continuous linear Hilbert space operator has an adjoint. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnlnssadj | ⊢ ( LinOp ∩ ContOp ) ⊆ dom adjℎ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnlnadj | ⊢ ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ∃ 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) ) | |
| 2 | df-rex | ⊢ ( ∃ 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) ↔ ∃ 𝑡 ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) ) ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ∃ 𝑡 ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) ) ) |
| 4 | inss1 | ⊢ ( LinOp ∩ ContOp ) ⊆ LinOp | |
| 5 | 4 | sseli | ⊢ ( 𝑦 ∈ ( LinOp ∩ ContOp ) → 𝑦 ∈ LinOp ) |
| 6 | lnopf | ⊢ ( 𝑦 ∈ LinOp → 𝑦 : ℋ ⟶ ℋ ) | |
| 7 | 5 6 | syl | ⊢ ( 𝑦 ∈ ( LinOp ∩ ContOp ) → 𝑦 : ℋ ⟶ ℋ ) |
| 8 | 7 | a1d | ⊢ ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ( ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) ) → 𝑦 : ℋ ⟶ ℋ ) ) |
| 9 | 4 | sseli | ⊢ ( 𝑡 ∈ ( LinOp ∩ ContOp ) → 𝑡 ∈ LinOp ) |
| 10 | lnopf | ⊢ ( 𝑡 ∈ LinOp → 𝑡 : ℋ ⟶ ℋ ) | |
| 11 | 9 10 | syl | ⊢ ( 𝑡 ∈ ( LinOp ∩ ContOp ) → 𝑡 : ℋ ⟶ ℋ ) |
| 12 | 11 | a1i | ⊢ ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ( 𝑡 ∈ ( LinOp ∩ ContOp ) → 𝑡 : ℋ ⟶ ℋ ) ) |
| 13 | 12 | adantrd | ⊢ ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ( ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) ) → 𝑡 : ℋ ⟶ ℋ ) ) |
| 14 | eqcom | ⊢ ( ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) ↔ ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) = ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) ) | |
| 15 | 14 | biimpi | ⊢ ( ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) → ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) = ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) ) |
| 16 | 15 | 2ralimi | ⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) → ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) = ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) ) |
| 17 | adjsym | ⊢ ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑦 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) = ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑧 ) ) ) | |
| 18 | 11 7 17 | syl2anr | ⊢ ( ( 𝑦 ∈ ( LinOp ∩ ContOp ) ∧ 𝑡 ∈ ( LinOp ∩ ContOp ) ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) = ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑧 ) ) ) |
| 19 | 16 18 | imbitrid | ⊢ ( ( 𝑦 ∈ ( LinOp ∩ ContOp ) ∧ 𝑡 ∈ ( LinOp ∩ ContOp ) ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) → ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑧 ) ) ) |
| 20 | 19 | expimpd | ⊢ ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ( ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) ) → ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑧 ) ) ) |
| 21 | 8 13 20 | 3jcad | ⊢ ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ( ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) ) → ( 𝑦 : ℋ ⟶ ℋ ∧ 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑧 ) ) ) ) |
| 22 | dfadj2 | ⊢ adjℎ = { 〈 𝑢 , 𝑣 〉 ∣ ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑧 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑧 ) ) } | |
| 23 | 22 | eleq2i | ⊢ ( 〈 𝑦 , 𝑡 〉 ∈ adjℎ ↔ 〈 𝑦 , 𝑡 〉 ∈ { 〈 𝑢 , 𝑣 〉 ∣ ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑧 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑧 ) ) } ) |
| 24 | vex | ⊢ 𝑦 ∈ V | |
| 25 | vex | ⊢ 𝑡 ∈ V | |
| 26 | feq1 | ⊢ ( 𝑢 = 𝑦 → ( 𝑢 : ℋ ⟶ ℋ ↔ 𝑦 : ℋ ⟶ ℋ ) ) | |
| 27 | fveq1 | ⊢ ( 𝑢 = 𝑦 → ( 𝑢 ‘ 𝑧 ) = ( 𝑦 ‘ 𝑧 ) ) | |
| 28 | 27 | oveq2d | ⊢ ( 𝑢 = 𝑦 → ( 𝑥 ·ih ( 𝑢 ‘ 𝑧 ) ) = ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) ) |
| 29 | 28 | eqeq1d | ⊢ ( 𝑢 = 𝑦 → ( ( 𝑥 ·ih ( 𝑢 ‘ 𝑧 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑧 ) ↔ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑧 ) ) ) |
| 30 | 29 | 2ralbidv | ⊢ ( 𝑢 = 𝑦 → ( ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑧 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑧 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑧 ) ) ) |
| 31 | 26 30 | 3anbi13d | ⊢ ( 𝑢 = 𝑦 → ( ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑧 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑧 ) ) ↔ ( 𝑦 : ℋ ⟶ ℋ ∧ 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑧 ) ) ) ) |
| 32 | feq1 | ⊢ ( 𝑣 = 𝑡 → ( 𝑣 : ℋ ⟶ ℋ ↔ 𝑡 : ℋ ⟶ ℋ ) ) | |
| 33 | fveq1 | ⊢ ( 𝑣 = 𝑡 → ( 𝑣 ‘ 𝑥 ) = ( 𝑡 ‘ 𝑥 ) ) | |
| 34 | 33 | oveq1d | ⊢ ( 𝑣 = 𝑡 → ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑧 ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑧 ) ) |
| 35 | 34 | eqeq2d | ⊢ ( 𝑣 = 𝑡 → ( ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑧 ) ↔ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑧 ) ) ) |
| 36 | 35 | 2ralbidv | ⊢ ( 𝑣 = 𝑡 → ( ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑧 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑧 ) ) ) |
| 37 | 32 36 | 3anbi23d | ⊢ ( 𝑣 = 𝑡 → ( ( 𝑦 : ℋ ⟶ ℋ ∧ 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑧 ) ) ↔ ( 𝑦 : ℋ ⟶ ℋ ∧ 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑧 ) ) ) ) |
| 38 | 24 25 31 37 | opelopab | ⊢ ( 〈 𝑦 , 𝑡 〉 ∈ { 〈 𝑢 , 𝑣 〉 ∣ ( 𝑢 : ℋ ⟶ ℋ ∧ 𝑣 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑢 ‘ 𝑧 ) ) = ( ( 𝑣 ‘ 𝑥 ) ·ih 𝑧 ) ) } ↔ ( 𝑦 : ℋ ⟶ ℋ ∧ 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑧 ) ) ) |
| 39 | 23 38 | bitr2i | ⊢ ( ( 𝑦 : ℋ ⟶ ℋ ∧ 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑥 ·ih ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑧 ) ) ↔ 〈 𝑦 , 𝑡 〉 ∈ adjℎ ) |
| 40 | 21 39 | imbitrdi | ⊢ ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ( ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) ) → 〈 𝑦 , 𝑡 〉 ∈ adjℎ ) ) |
| 41 | 40 | eximdv | ⊢ ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ( ∃ 𝑡 ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝑦 ‘ 𝑥 ) ·ih 𝑧 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑧 ) ) ) → ∃ 𝑡 〈 𝑦 , 𝑡 〉 ∈ adjℎ ) ) |
| 42 | 3 41 | mpd | ⊢ ( 𝑦 ∈ ( LinOp ∩ ContOp ) → ∃ 𝑡 〈 𝑦 , 𝑡 〉 ∈ adjℎ ) |
| 43 | 24 | eldm2 | ⊢ ( 𝑦 ∈ dom adjℎ ↔ ∃ 𝑡 〈 𝑦 , 𝑡 〉 ∈ adjℎ ) |
| 44 | 42 43 | sylibr | ⊢ ( 𝑦 ∈ ( LinOp ∩ ContOp ) → 𝑦 ∈ dom adjℎ ) |
| 45 | 44 | ssriv | ⊢ ( LinOp ∩ ContOp ) ⊆ dom adjℎ |