This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Symmetry property of an adjoint. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adjsym | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralcom | ⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) | |
| 2 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝑆 ‘ 𝑧 ) = ( 𝑆 ‘ 𝑦 ) ) | |
| 3 | 2 | oveq2d | ⊢ ( 𝑧 = 𝑦 → ( 𝑥 ·ih ( 𝑆 ‘ 𝑧 ) ) = ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) ) |
| 4 | oveq2 | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) | |
| 5 | 3 4 | eqeq12d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑥 ·ih ( 𝑆 ‘ 𝑧 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) ↔ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 6 | 5 | ralbidv | ⊢ ( 𝑧 = 𝑦 → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑧 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) ↔ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 7 | 6 | cbvralvw | ⊢ ( ∀ 𝑧 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑧 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) ↔ ∀ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 8 | 1 7 | bitr4i | ⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑧 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑧 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) ) |
| 9 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ·ih ( 𝑆 ‘ 𝑧 ) ) = ( 𝑦 ·ih ( 𝑆 ‘ 𝑧 ) ) ) | |
| 10 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑦 ) ) | |
| 11 | 10 | oveq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑧 ) ) |
| 12 | 9 11 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ·ih ( 𝑆 ‘ 𝑧 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) ↔ ( 𝑦 ·ih ( 𝑆 ‘ 𝑧 ) ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑧 ) ) ) |
| 13 | 12 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑧 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) ↔ ∀ 𝑦 ∈ ℋ ( 𝑦 ·ih ( 𝑆 ‘ 𝑧 ) ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑧 ) ) |
| 14 | 13 | ralbii | ⊢ ( ∀ 𝑧 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑧 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑧 ) ↔ ∀ 𝑧 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑦 ·ih ( 𝑆 ‘ 𝑧 ) ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑧 ) ) |
| 15 | fveq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝑆 ‘ 𝑧 ) = ( 𝑆 ‘ 𝑥 ) ) | |
| 16 | 15 | oveq2d | ⊢ ( 𝑧 = 𝑥 → ( 𝑦 ·ih ( 𝑆 ‘ 𝑧 ) ) = ( 𝑦 ·ih ( 𝑆 ‘ 𝑥 ) ) ) |
| 17 | oveq2 | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑧 ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) ) | |
| 18 | 16 17 | eqeq12d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑦 ·ih ( 𝑆 ‘ 𝑧 ) ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑧 ) ↔ ( 𝑦 ·ih ( 𝑆 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) ) ) |
| 19 | 18 | ralbidv | ⊢ ( 𝑧 = 𝑥 → ( ∀ 𝑦 ∈ ℋ ( 𝑦 ·ih ( 𝑆 ‘ 𝑧 ) ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑧 ) ↔ ∀ 𝑦 ∈ ℋ ( 𝑦 ·ih ( 𝑆 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) ) ) |
| 20 | 19 | cbvralvw | ⊢ ( ∀ 𝑧 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑦 ·ih ( 𝑆 ‘ 𝑧 ) ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑧 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑦 ·ih ( 𝑆 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) ) |
| 21 | 8 14 20 | 3bitri | ⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑦 ·ih ( 𝑆 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) ) |
| 22 | ffvelcdm | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) | |
| 23 | ax-his1 | ⊢ ( ( ( 𝑇 ‘ 𝑦 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) = ( ∗ ‘ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) ) | |
| 24 | 22 23 | sylan | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) = ( ∗ ‘ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 25 | 24 | adantrl | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) = ( ∗ ‘ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 26 | ffvelcdm | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑆 ‘ 𝑥 ) ∈ ℋ ) | |
| 27 | ax-his1 | ⊢ ( ( 𝑦 ∈ ℋ ∧ ( 𝑆 ‘ 𝑥 ) ∈ ℋ ) → ( 𝑦 ·ih ( 𝑆 ‘ 𝑥 ) ) = ( ∗ ‘ ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) ) ) | |
| 28 | 26 27 | sylan2 | ⊢ ( ( 𝑦 ∈ ℋ ∧ ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ) → ( 𝑦 ·ih ( 𝑆 ‘ 𝑥 ) ) = ( ∗ ‘ ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 29 | 28 | adantll | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ) → ( 𝑦 ·ih ( 𝑆 ‘ 𝑥 ) ) = ( ∗ ‘ ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 30 | 25 29 | eqeq12d | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ) → ( ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) = ( 𝑦 ·ih ( 𝑆 ‘ 𝑥 ) ) ↔ ( ∗ ‘ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) = ( ∗ ‘ ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) ) ) ) |
| 31 | 30 | ancoms | ⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) = ( 𝑦 ·ih ( 𝑆 ‘ 𝑥 ) ) ↔ ( ∗ ‘ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) = ( ∗ ‘ ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) ) ) ) |
| 32 | hicl | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ∈ ℂ ) | |
| 33 | 22 32 | sylan2 | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ∈ ℂ ) |
| 34 | 33 | adantll | ⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ∈ ℂ ) |
| 35 | hicl | ⊢ ( ( ( 𝑆 ‘ 𝑥 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) ∈ ℂ ) | |
| 36 | 26 35 | sylan | ⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ 𝑦 ∈ ℋ ) → ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) ∈ ℂ ) |
| 37 | 36 | adantrl | ⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) ∈ ℂ ) |
| 38 | cj11 | ⊢ ( ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ∈ ℂ ∧ ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) ∈ ℂ ) → ( ( ∗ ‘ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) = ( ∗ ‘ ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) ) ↔ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) ) ) | |
| 39 | 34 37 38 | syl2anc | ⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ∗ ‘ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) = ( ∗ ‘ ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) ) ↔ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 40 | 31 39 | bitr2d | ⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ∧ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) = ( 𝑦 ·ih ( 𝑆 ‘ 𝑥 ) ) ) ) |
| 41 | 40 | an4s | ⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) = ( 𝑦 ·ih ( 𝑆 ‘ 𝑥 ) ) ) ) |
| 42 | 41 | anassrs | ⊢ ( ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) ∧ 𝑦 ∈ ℋ ) → ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) = ( 𝑦 ·ih ( 𝑆 ‘ 𝑥 ) ) ) ) |
| 43 | eqcom | ⊢ ( ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) = ( 𝑦 ·ih ( 𝑆 ‘ 𝑥 ) ) ↔ ( 𝑦 ·ih ( 𝑆 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) ) | |
| 44 | 42 43 | bitrdi | ⊢ ( ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) ∧ 𝑦 ∈ ℋ ) → ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( 𝑦 ·ih ( 𝑆 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) ) ) |
| 45 | 44 | ralbidva | ⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑦 ∈ ℋ ( 𝑦 ·ih ( 𝑆 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) ) ) |
| 46 | 45 | ralbidva | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑦 ·ih ( 𝑆 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑥 ) ) ) |
| 47 | 21 46 | bitr4id | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑆 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑆 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |