This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: F and its extension by continuity agree on the domain of F . (Contributed by Thierry Arnoux, 29-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnextfres.c | |- C = U. J |
|
| cnextfres.b | |- B = U. K |
||
| cnextfres.j | |- ( ph -> J e. Top ) |
||
| cnextfres.k | |- ( ph -> K e. Haus ) |
||
| cnextfres.a | |- ( ph -> A C_ C ) |
||
| cnextfres.1 | |- ( ph -> F e. ( ( J |`t A ) Cn K ) ) |
||
| cnextfres.x | |- ( ph -> X e. A ) |
||
| Assertion | cnextfres | |- ( ph -> ( ( ( J CnExt K ) ` F ) ` X ) = ( F ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnextfres.c | |- C = U. J |
|
| 2 | cnextfres.b | |- B = U. K |
|
| 3 | cnextfres.j | |- ( ph -> J e. Top ) |
|
| 4 | cnextfres.k | |- ( ph -> K e. Haus ) |
|
| 5 | cnextfres.a | |- ( ph -> A C_ C ) |
|
| 6 | cnextfres.1 | |- ( ph -> F e. ( ( J |`t A ) Cn K ) ) |
|
| 7 | cnextfres.x | |- ( ph -> X e. A ) |
|
| 8 | eqid | |- U. ( J |`t A ) = U. ( J |`t A ) |
|
| 9 | 8 2 | cnf | |- ( F e. ( ( J |`t A ) Cn K ) -> F : U. ( J |`t A ) --> B ) |
| 10 | 6 9 | syl | |- ( ph -> F : U. ( J |`t A ) --> B ) |
| 11 | 1 | restuni | |- ( ( J e. Top /\ A C_ C ) -> A = U. ( J |`t A ) ) |
| 12 | 3 5 11 | syl2anc | |- ( ph -> A = U. ( J |`t A ) ) |
| 13 | 12 | feq2d | |- ( ph -> ( F : A --> B <-> F : U. ( J |`t A ) --> B ) ) |
| 14 | 10 13 | mpbird | |- ( ph -> F : A --> B ) |
| 15 | 1 2 | cnextfun | |- ( ( ( J e. Top /\ K e. Haus ) /\ ( F : A --> B /\ A C_ C ) ) -> Fun ( ( J CnExt K ) ` F ) ) |
| 16 | 3 4 14 5 15 | syl22anc | |- ( ph -> Fun ( ( J CnExt K ) ` F ) ) |
| 17 | 1 | sscls | |- ( ( J e. Top /\ A C_ C ) -> A C_ ( ( cls ` J ) ` A ) ) |
| 18 | 3 5 17 | syl2anc | |- ( ph -> A C_ ( ( cls ` J ) ` A ) ) |
| 19 | 18 7 | sseldd | |- ( ph -> X e. ( ( cls ` J ) ` A ) ) |
| 20 | 1 2 3 5 6 7 | flfcntr | |- ( ph -> ( F ` X ) e. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) |
| 21 | sneq | |- ( x = X -> { x } = { X } ) |
|
| 22 | 21 | fveq2d | |- ( x = X -> ( ( nei ` J ) ` { x } ) = ( ( nei ` J ) ` { X } ) ) |
| 23 | 22 | oveq1d | |- ( x = X -> ( ( ( nei ` J ) ` { x } ) |`t A ) = ( ( ( nei ` J ) ` { X } ) |`t A ) ) |
| 24 | 23 | oveq2d | |- ( x = X -> ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) = ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ) |
| 25 | 24 | fveq1d | |- ( x = X -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) = ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) |
| 26 | 25 | opeliunxp2 | |- ( <. X , ( F ` X ) >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) <-> ( X e. ( ( cls ` J ) ` A ) /\ ( F ` X ) e. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) ) |
| 27 | 19 20 26 | sylanbrc | |- ( ph -> <. X , ( F ` X ) >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) |
| 28 | haustop | |- ( K e. Haus -> K e. Top ) |
|
| 29 | 4 28 | syl | |- ( ph -> K e. Top ) |
| 30 | 1 2 | cnextfval | |- ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ C ) ) -> ( ( J CnExt K ) ` F ) = U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) |
| 31 | 3 29 14 5 30 | syl22anc | |- ( ph -> ( ( J CnExt K ) ` F ) = U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) |
| 32 | 27 31 | eleqtrrd | |- ( ph -> <. X , ( F ` X ) >. e. ( ( J CnExt K ) ` F ) ) |
| 33 | df-br | |- ( X ( ( J CnExt K ) ` F ) ( F ` X ) <-> <. X , ( F ` X ) >. e. ( ( J CnExt K ) ` F ) ) |
|
| 34 | 32 33 | sylibr | |- ( ph -> X ( ( J CnExt K ) ` F ) ( F ` X ) ) |
| 35 | funbrfv | |- ( Fun ( ( J CnExt K ) ` F ) -> ( X ( ( J CnExt K ) ` F ) ( F ` X ) -> ( ( ( J CnExt K ) ` F ) ` X ) = ( F ` X ) ) ) |
|
| 36 | 16 34 35 | sylc | |- ( ph -> ( ( ( J CnExt K ) ` F ) ` X ) = ( F ` X ) ) |