This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of a left inverse for addition. (Contributed by Scott Fenton, 3-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnegex2 | ⊢ ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℂ ( 𝑥 + 𝐴 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | ⊢ i ∈ ℂ | |
| 2 | 1 1 | mulcli | ⊢ ( i · i ) ∈ ℂ |
| 3 | mulcl | ⊢ ( ( ( i · i ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( i · i ) · 𝐴 ) ∈ ℂ ) | |
| 4 | 2 3 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( ( i · i ) · 𝐴 ) ∈ ℂ ) |
| 5 | mullid | ⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) | |
| 6 | 5 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( i · i ) · 𝐴 ) + ( 1 · 𝐴 ) ) = ( ( ( i · i ) · 𝐴 ) + 𝐴 ) ) |
| 7 | ax-i2m1 | ⊢ ( ( i · i ) + 1 ) = 0 | |
| 8 | 7 | oveq1i | ⊢ ( ( ( i · i ) + 1 ) · 𝐴 ) = ( 0 · 𝐴 ) |
| 9 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 10 | adddir | ⊢ ( ( ( i · i ) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( ( i · i ) + 1 ) · 𝐴 ) = ( ( ( i · i ) · 𝐴 ) + ( 1 · 𝐴 ) ) ) | |
| 11 | 2 9 10 | mp3an12 | ⊢ ( 𝐴 ∈ ℂ → ( ( ( i · i ) + 1 ) · 𝐴 ) = ( ( ( i · i ) · 𝐴 ) + ( 1 · 𝐴 ) ) ) |
| 12 | mul02 | ⊢ ( 𝐴 ∈ ℂ → ( 0 · 𝐴 ) = 0 ) | |
| 13 | 8 11 12 | 3eqtr3a | ⊢ ( 𝐴 ∈ ℂ → ( ( ( i · i ) · 𝐴 ) + ( 1 · 𝐴 ) ) = 0 ) |
| 14 | 6 13 | eqtr3d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( i · i ) · 𝐴 ) + 𝐴 ) = 0 ) |
| 15 | oveq1 | ⊢ ( 𝑥 = ( ( i · i ) · 𝐴 ) → ( 𝑥 + 𝐴 ) = ( ( ( i · i ) · 𝐴 ) + 𝐴 ) ) | |
| 16 | 15 | eqeq1d | ⊢ ( 𝑥 = ( ( i · i ) · 𝐴 ) → ( ( 𝑥 + 𝐴 ) = 0 ↔ ( ( ( i · i ) · 𝐴 ) + 𝐴 ) = 0 ) ) |
| 17 | 16 | rspcev | ⊢ ( ( ( ( i · i ) · 𝐴 ) ∈ ℂ ∧ ( ( ( i · i ) · 𝐴 ) + 𝐴 ) = 0 ) → ∃ 𝑥 ∈ ℂ ( 𝑥 + 𝐴 ) = 0 ) |
| 18 | 4 14 17 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℂ ( 𝑥 + 𝐴 ) = 0 ) |