This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of cndrng as of 30-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cndrngOLD | ⊢ ℂfld ∈ DivRing |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 2 | 1 | a1i | ⊢ ( ⊤ → ℂ = ( Base ‘ ℂfld ) ) |
| 3 | cnfldmul | ⊢ · = ( .r ‘ ℂfld ) | |
| 4 | 3 | a1i | ⊢ ( ⊤ → · = ( .r ‘ ℂfld ) ) |
| 5 | cnfld0 | ⊢ 0 = ( 0g ‘ ℂfld ) | |
| 6 | 5 | a1i | ⊢ ( ⊤ → 0 = ( 0g ‘ ℂfld ) ) |
| 7 | cnfld1 | ⊢ 1 = ( 1r ‘ ℂfld ) | |
| 8 | 7 | a1i | ⊢ ( ⊤ → 1 = ( 1r ‘ ℂfld ) ) |
| 9 | cnring | ⊢ ℂfld ∈ Ring | |
| 10 | 9 | a1i | ⊢ ( ⊤ → ℂfld ∈ Ring ) |
| 11 | mulne0 | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 · 𝑦 ) ≠ 0 ) | |
| 12 | 11 | 3adant1 | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 · 𝑦 ) ≠ 0 ) |
| 13 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 14 | 13 | a1i | ⊢ ( ⊤ → 1 ≠ 0 ) |
| 15 | reccl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( 1 / 𝑥 ) ∈ ℂ ) | |
| 16 | 15 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) → ( 1 / 𝑥 ) ∈ ℂ ) |
| 17 | recid2 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → ( ( 1 / 𝑥 ) · 𝑥 ) = 1 ) | |
| 18 | 17 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) → ( ( 1 / 𝑥 ) · 𝑥 ) = 1 ) |
| 19 | 2 4 6 8 10 12 14 16 18 | isdrngd | ⊢ ( ⊤ → ℂfld ∈ DivRing ) |
| 20 | 19 | mptru | ⊢ ℂfld ∈ DivRing |