This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of cndrng as of 30-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cndrngOLD | |- CCfld e. DivRing |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 2 | 1 | a1i | |- ( T. -> CC = ( Base ` CCfld ) ) |
| 3 | cnfldmul | |- x. = ( .r ` CCfld ) |
|
| 4 | 3 | a1i | |- ( T. -> x. = ( .r ` CCfld ) ) |
| 5 | cnfld0 | |- 0 = ( 0g ` CCfld ) |
|
| 6 | 5 | a1i | |- ( T. -> 0 = ( 0g ` CCfld ) ) |
| 7 | cnfld1 | |- 1 = ( 1r ` CCfld ) |
|
| 8 | 7 | a1i | |- ( T. -> 1 = ( 1r ` CCfld ) ) |
| 9 | cnring | |- CCfld e. Ring |
|
| 10 | 9 | a1i | |- ( T. -> CCfld e. Ring ) |
| 11 | mulne0 | |- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( x x. y ) =/= 0 ) |
|
| 12 | 11 | 3adant1 | |- ( ( T. /\ ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( x x. y ) =/= 0 ) |
| 13 | ax-1ne0 | |- 1 =/= 0 |
|
| 14 | 13 | a1i | |- ( T. -> 1 =/= 0 ) |
| 15 | reccl | |- ( ( x e. CC /\ x =/= 0 ) -> ( 1 / x ) e. CC ) |
|
| 16 | 15 | adantl | |- ( ( T. /\ ( x e. CC /\ x =/= 0 ) ) -> ( 1 / x ) e. CC ) |
| 17 | recid2 | |- ( ( x e. CC /\ x =/= 0 ) -> ( ( 1 / x ) x. x ) = 1 ) |
|
| 18 | 17 | adantl | |- ( ( T. /\ ( x e. CC /\ x =/= 0 ) ) -> ( ( 1 / x ) x. x ) = 1 ) |
| 19 | 2 4 6 8 10 12 14 16 18 | isdrngd | |- ( T. -> CCfld e. DivRing ) |
| 20 | 19 | mptru | |- CCfld e. DivRing |