This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous complex function restricted to a subset is continuous, using maps-to notation. This theorem generalizes cncfmptss because it allows to establish a subset for the codomain also. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfmptssg.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐸 ) | |
| cncfmptssg.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) | ||
| cncfmptssg.4 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | ||
| cncfmptssg.5 | ⊢ ( 𝜑 → 𝐷 ⊆ 𝐵 ) | ||
| cncfmptssg.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐸 ∈ 𝐷 ) | ||
| Assertion | cncfmptssg | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ 𝐸 ) ∈ ( 𝐶 –cn→ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfmptssg.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐸 ) | |
| 2 | cncfmptssg.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) | |
| 3 | cncfmptssg.4 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | |
| 4 | cncfmptssg.5 | ⊢ ( 𝜑 → 𝐷 ⊆ 𝐵 ) | |
| 5 | cncfmptssg.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐸 ∈ 𝐷 ) | |
| 6 | 5 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ 𝐸 ) : 𝐶 ⟶ 𝐷 ) |
| 7 | cncfrss2 | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) → 𝐵 ⊆ ℂ ) | |
| 8 | 2 7 | syl | ⊢ ( 𝜑 → 𝐵 ⊆ ℂ ) |
| 9 | 4 8 | sstrd | ⊢ ( 𝜑 → 𝐷 ⊆ ℂ ) |
| 10 | 3 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ 𝐴 ) |
| 11 | 1 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐸 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑥 ) = 𝐸 ) |
| 12 | 10 5 11 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑥 ) = 𝐸 ) |
| 13 | 12 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐶 ↦ 𝐸 ) ) |
| 14 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐸 ) | |
| 15 | 1 14 | nfcxfr | ⊢ Ⅎ 𝑥 𝐹 |
| 16 | 15 2 3 | cncfmptss | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐶 –cn→ 𝐵 ) ) |
| 17 | 13 16 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ 𝐸 ) ∈ ( 𝐶 –cn→ 𝐵 ) ) |
| 18 | cncfcdm | ⊢ ( ( 𝐷 ⊆ ℂ ∧ ( 𝑥 ∈ 𝐶 ↦ 𝐸 ) ∈ ( 𝐶 –cn→ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐶 ↦ 𝐸 ) ∈ ( 𝐶 –cn→ 𝐷 ) ↔ ( 𝑥 ∈ 𝐶 ↦ 𝐸 ) : 𝐶 ⟶ 𝐷 ) ) | |
| 19 | 9 17 18 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐶 ↦ 𝐸 ) ∈ ( 𝐶 –cn→ 𝐷 ) ↔ ( 𝑥 ∈ 𝐶 ↦ 𝐸 ) : 𝐶 ⟶ 𝐷 ) ) |
| 20 | 6 19 | mpbird | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ 𝐸 ) ∈ ( 𝐶 –cn→ 𝐷 ) ) |