This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous complex function restricted to a subset is continuous, using maps-to notation. This theorem generalizes cncfmptss because it allows to establish a subset for the codomain also. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfmptssg.2 | ||
| cncfmptssg.3 | |||
| cncfmptssg.4 | |||
| cncfmptssg.5 | |||
| cncfmptssg.6 | |||
| Assertion | cncfmptssg |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfmptssg.2 | ||
| 2 | cncfmptssg.3 | ||
| 3 | cncfmptssg.4 | ||
| 4 | cncfmptssg.5 | ||
| 5 | cncfmptssg.6 | ||
| 6 | 5 | fmpttd | |
| 7 | cncfrss2 | ||
| 8 | 2 7 | syl | |
| 9 | 4 8 | sstrd | |
| 10 | 3 | sselda | |
| 11 | 1 | fvmpt2 | |
| 12 | 10 5 11 | syl2anc | |
| 13 | 12 | mpteq2dva | |
| 14 | nfmpt1 | ||
| 15 | 1 14 | nfcxfr | |
| 16 | 15 2 3 | cncfmptss | |
| 17 | 13 16 | eqeltrrd | |
| 18 | cncfcdm | ||
| 19 | 9 17 18 | syl2anc | |
| 20 | 6 19 | mpbird |