This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the group inverse of complex number addition. See also cnfldneg . (Contributed by Steve Rodriguez, 3-Dec-2006) (Revised by AV, 26-Aug-2021) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnaddabl.g | ⊢ 𝐺 = { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , + 〉 } | |
| Assertion | cnaddinv | ⊢ ( 𝐴 ∈ ℂ → ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) = - 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnaddabl.g | ⊢ 𝐺 = { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , + 〉 } | |
| 2 | negid | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + - 𝐴 ) = 0 ) | |
| 3 | 1 | cnaddabl | ⊢ 𝐺 ∈ Abel |
| 4 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 5 | 3 4 | ax-mp | ⊢ 𝐺 ∈ Grp |
| 6 | id | ⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) | |
| 7 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
| 8 | cnex | ⊢ ℂ ∈ V | |
| 9 | 1 | grpbase | ⊢ ( ℂ ∈ V → ℂ = ( Base ‘ 𝐺 ) ) |
| 10 | 8 9 | ax-mp | ⊢ ℂ = ( Base ‘ 𝐺 ) |
| 11 | addex | ⊢ + ∈ V | |
| 12 | 1 | grpplusg | ⊢ ( + ∈ V → + = ( +g ‘ 𝐺 ) ) |
| 13 | 11 12 | ax-mp | ⊢ + = ( +g ‘ 𝐺 ) |
| 14 | 1 | cnaddid | ⊢ ( 0g ‘ 𝐺 ) = 0 |
| 15 | 14 | eqcomi | ⊢ 0 = ( 0g ‘ 𝐺 ) |
| 16 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 17 | 10 13 15 16 | grpinvid1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ ℂ ∧ - 𝐴 ∈ ℂ ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) = - 𝐴 ↔ ( 𝐴 + - 𝐴 ) = 0 ) ) |
| 18 | 5 6 7 17 | mp3an2i | ⊢ ( 𝐴 ∈ ℂ → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) = - 𝐴 ↔ ( 𝐴 + - 𝐴 ) = 0 ) ) |
| 19 | 2 18 | mpbird | ⊢ ( 𝐴 ∈ ℂ → ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) = - 𝐴 ) |