This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the group inverse of complex number addition. See also cnfldneg . (Contributed by Steve Rodriguez, 3-Dec-2006) (Revised by AV, 26-Aug-2021) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnaddabl.g | |- G = { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } |
|
| Assertion | cnaddinv | |- ( A e. CC -> ( ( invg ` G ) ` A ) = -u A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnaddabl.g | |- G = { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } |
|
| 2 | negid | |- ( A e. CC -> ( A + -u A ) = 0 ) |
|
| 3 | 1 | cnaddabl | |- G e. Abel |
| 4 | ablgrp | |- ( G e. Abel -> G e. Grp ) |
|
| 5 | 3 4 | ax-mp | |- G e. Grp |
| 6 | id | |- ( A e. CC -> A e. CC ) |
|
| 7 | negcl | |- ( A e. CC -> -u A e. CC ) |
|
| 8 | cnex | |- CC e. _V |
|
| 9 | 1 | grpbase | |- ( CC e. _V -> CC = ( Base ` G ) ) |
| 10 | 8 9 | ax-mp | |- CC = ( Base ` G ) |
| 11 | addex | |- + e. _V |
|
| 12 | 1 | grpplusg | |- ( + e. _V -> + = ( +g ` G ) ) |
| 13 | 11 12 | ax-mp | |- + = ( +g ` G ) |
| 14 | 1 | cnaddid | |- ( 0g ` G ) = 0 |
| 15 | 14 | eqcomi | |- 0 = ( 0g ` G ) |
| 16 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 17 | 10 13 15 16 | grpinvid1 | |- ( ( G e. Grp /\ A e. CC /\ -u A e. CC ) -> ( ( ( invg ` G ) ` A ) = -u A <-> ( A + -u A ) = 0 ) ) |
| 18 | 5 6 7 17 | mp3an2i | |- ( A e. CC -> ( ( ( invg ` G ) ` A ) = -u A <-> ( A + -u A ) = 0 ) ) |
| 19 | 2 18 | mpbird | |- ( A e. CC -> ( ( invg ` G ) ` A ) = -u A ) |