This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A compact metric space is complete. One half of heibor . (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | relcmpcmet.1 | |- J = ( MetOpen ` D ) |
|
| relcmpcmet.2 | |- ( ph -> D e. ( Met ` X ) ) |
||
| cmpcmet.3 | |- ( ph -> J e. Comp ) |
||
| Assertion | cmpcmet | |- ( ph -> D e. ( CMet ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcmpcmet.1 | |- J = ( MetOpen ` D ) |
|
| 2 | relcmpcmet.2 | |- ( ph -> D e. ( Met ` X ) ) |
|
| 3 | cmpcmet.3 | |- ( ph -> J e. Comp ) |
|
| 4 | 1rp | |- 1 e. RR+ |
|
| 5 | 4 | a1i | |- ( ph -> 1 e. RR+ ) |
| 6 | 3 | adantr | |- ( ( ph /\ x e. X ) -> J e. Comp ) |
| 7 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 8 | 2 7 | syl | |- ( ph -> D e. ( *Met ` X ) ) |
| 9 | 8 | adantr | |- ( ( ph /\ x e. X ) -> D e. ( *Met ` X ) ) |
| 10 | 1 | mopntop | |- ( D e. ( *Met ` X ) -> J e. Top ) |
| 11 | 9 10 | syl | |- ( ( ph /\ x e. X ) -> J e. Top ) |
| 12 | simpr | |- ( ( ph /\ x e. X ) -> x e. X ) |
|
| 13 | rpxr | |- ( 1 e. RR+ -> 1 e. RR* ) |
|
| 14 | 4 13 | mp1i | |- ( ( ph /\ x e. X ) -> 1 e. RR* ) |
| 15 | blssm | |- ( ( D e. ( *Met ` X ) /\ x e. X /\ 1 e. RR* ) -> ( x ( ball ` D ) 1 ) C_ X ) |
|
| 16 | 9 12 14 15 | syl3anc | |- ( ( ph /\ x e. X ) -> ( x ( ball ` D ) 1 ) C_ X ) |
| 17 | 1 | mopnuni | |- ( D e. ( *Met ` X ) -> X = U. J ) |
| 18 | 9 17 | syl | |- ( ( ph /\ x e. X ) -> X = U. J ) |
| 19 | 16 18 | sseqtrd | |- ( ( ph /\ x e. X ) -> ( x ( ball ` D ) 1 ) C_ U. J ) |
| 20 | eqid | |- U. J = U. J |
|
| 21 | 20 | clscld | |- ( ( J e. Top /\ ( x ( ball ` D ) 1 ) C_ U. J ) -> ( ( cls ` J ) ` ( x ( ball ` D ) 1 ) ) e. ( Clsd ` J ) ) |
| 22 | 11 19 21 | syl2anc | |- ( ( ph /\ x e. X ) -> ( ( cls ` J ) ` ( x ( ball ` D ) 1 ) ) e. ( Clsd ` J ) ) |
| 23 | cmpcld | |- ( ( J e. Comp /\ ( ( cls ` J ) ` ( x ( ball ` D ) 1 ) ) e. ( Clsd ` J ) ) -> ( J |`t ( ( cls ` J ) ` ( x ( ball ` D ) 1 ) ) ) e. Comp ) |
|
| 24 | 6 22 23 | syl2anc | |- ( ( ph /\ x e. X ) -> ( J |`t ( ( cls ` J ) ` ( x ( ball ` D ) 1 ) ) ) e. Comp ) |
| 25 | 1 2 5 24 | relcmpcmet | |- ( ph -> D e. ( CMet ` X ) ) |