This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given a metric D and a uniform structure generated by that metric, Cauchy filter bases on that uniform structure are exactly the Cauchy filters for the metric. (Contributed by Thierry Arnoux, 15-Dec-2017) (Revised by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cfilucfil3 | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ) ↔ 𝐶 ∈ ( CauFil ‘ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetpsmet | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) | |
| 2 | cfilucfil2 | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ↔ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) | |
| 3 | 2 | anbi2d | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) ) |
| 4 | filfbas | ⊢ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) → 𝐶 ∈ ( fBas ‘ 𝑋 ) ) | |
| 5 | 4 | pm4.71i | ⊢ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑋 ) ) ) |
| 6 | 5 | anbi1i | ⊢ ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ↔ ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) |
| 7 | anass | ⊢ ( ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( fBas ‘ 𝑋 ) ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) | |
| 8 | 6 7 | bitr2i | ⊢ ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) |
| 9 | 3 8 | bitrdi | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) |
| 10 | 1 9 | sylan2 | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) |
| 11 | iscfil | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐶 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( 𝐶 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) |
| 13 | 10 12 | bitr4d | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ) ↔ 𝐶 ∈ ( CauFil ‘ 𝐷 ) ) ) |