This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar product of a vector with powers of _i belongs to the base set of a subcomplex module if the scalar subring of th subcomplex module contains _i . (Contributed by AV, 18-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmodscexp.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| cmodscexp.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| cmodscmulexp.x | ⊢ 𝑋 = ( Base ‘ 𝑊 ) | ||
| cmodscmulexp.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| Assertion | cmodscmulexp | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( i ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ∧ 𝑁 ∈ ℕ ) ) → ( ( i ↑ 𝑁 ) · 𝐵 ) ∈ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmodscexp.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | cmodscexp.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 3 | cmodscmulexp.x | ⊢ 𝑋 = ( Base ‘ 𝑊 ) | |
| 4 | cmodscmulexp.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 5 | clmlmod | ⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( i ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ∧ 𝑁 ∈ ℕ ) ) → 𝑊 ∈ LMod ) |
| 7 | simp1 | ⊢ ( ( i ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ∧ 𝑁 ∈ ℕ ) → i ∈ 𝐾 ) | |
| 8 | 7 | anim2i | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( i ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ∧ 𝑁 ∈ ℕ ) ) → ( 𝑊 ∈ ℂMod ∧ i ∈ 𝐾 ) ) |
| 9 | simpr3 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( i ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ∧ 𝑁 ∈ ℕ ) ) → 𝑁 ∈ ℕ ) | |
| 10 | 1 2 | cmodscexp | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ i ∈ 𝐾 ) ∧ 𝑁 ∈ ℕ ) → ( i ↑ 𝑁 ) ∈ 𝐾 ) |
| 11 | 8 9 10 | syl2anc | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( i ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ∧ 𝑁 ∈ ℕ ) ) → ( i ↑ 𝑁 ) ∈ 𝐾 ) |
| 12 | simpr2 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( i ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ∧ 𝑁 ∈ ℕ ) ) → 𝐵 ∈ 𝑋 ) | |
| 13 | 3 1 4 2 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( i ↑ 𝑁 ) ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ) → ( ( i ↑ 𝑁 ) · 𝐵 ) ∈ 𝑋 ) |
| 14 | 6 11 12 13 | syl3anc | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( i ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ∧ 𝑁 ∈ ℕ ) ) → ( ( i ↑ 𝑁 ) · 𝐵 ) ∈ 𝑋 ) |