This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutation is symmetric. Theorem 3.4 of Beran p. 45. (Contributed by NM, 3-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjoml2.1 | ⊢ 𝐴 ∈ Cℋ | |
| pjoml2.2 | ⊢ 𝐵 ∈ Cℋ | ||
| Assertion | cmcmlem | ⊢ ( 𝐴 𝐶ℋ 𝐵 → 𝐵 𝐶ℋ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjoml2.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | pjoml2.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 4 | 2 3 | chub2i | ⊢ 𝐵 ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) |
| 5 | sseqin2 | ⊢ ( 𝐵 ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ↔ ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ∩ 𝐵 ) = 𝐵 ) | |
| 6 | 4 5 | mpbi | ⊢ ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ∩ 𝐵 ) = 𝐵 |
| 7 | 6 | ineq2i | ⊢ ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∩ ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ∩ 𝐵 ) ) = ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∩ 𝐵 ) |
| 8 | inass | ⊢ ( ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ∩ 𝐵 ) = ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∩ ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ∩ 𝐵 ) ) | |
| 9 | 1 2 | chdmm1i | ⊢ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) |
| 10 | 9 | ineq1i | ⊢ ( ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ∩ 𝐵 ) = ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∩ 𝐵 ) |
| 11 | 7 8 10 | 3eqtr4ri | ⊢ ( ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ∩ 𝐵 ) = ( ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ∩ 𝐵 ) |
| 12 | 1 2 | chdmj4i | ⊢ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) = ( 𝐴 ∩ 𝐵 ) |
| 13 | 1 2 | chdmj2i | ⊢ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) |
| 14 | 12 13 | oveq12i | ⊢ ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ) = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) |
| 15 | 14 | eqeq2i | ⊢ ( 𝐴 = ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ) ↔ 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 16 | 15 | biimpri | ⊢ ( 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) → 𝐴 = ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ) ) |
| 17 | 16 | fveq2d | ⊢ ( 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) → ( ⊥ ‘ 𝐴 ) = ( ⊥ ‘ ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ) ) ) |
| 18 | 2 | choccli | ⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
| 19 | 3 18 | chjcli | ⊢ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ |
| 20 | 3 2 | chjcli | ⊢ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ∈ Cℋ |
| 21 | 19 20 | chdmj4i | ⊢ ( ⊥ ‘ ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ) ) = ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) |
| 22 | 17 21 | eqtr2di | ⊢ ( 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) → ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( ⊥ ‘ 𝐴 ) ) |
| 23 | 22 | ineq1d | ⊢ ( 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) → ( ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ∩ 𝐵 ) = ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) |
| 24 | 11 23 | eqtrid | ⊢ ( 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) → ( ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ∩ 𝐵 ) = ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) |
| 25 | 24 | oveq2d | ⊢ ( 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) → ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ∩ 𝐵 ) ) = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) |
| 26 | inss2 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 | |
| 27 | 1 2 | chincli | ⊢ ( 𝐴 ∩ 𝐵 ) ∈ Cℋ |
| 28 | 27 2 | pjoml2i | ⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 → ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ∩ 𝐵 ) ) = 𝐵 ) |
| 29 | 26 28 | ax-mp | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ∩ 𝐵 ) ) = 𝐵 |
| 30 | incom | ⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐴 ) | |
| 31 | incom | ⊢ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) = ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) | |
| 32 | 30 31 | oveq12i | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = ( ( 𝐵 ∩ 𝐴 ) ∨ℋ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) ) |
| 33 | 25 29 32 | 3eqtr3g | ⊢ ( 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) → 𝐵 = ( ( 𝐵 ∩ 𝐴 ) ∨ℋ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 34 | 1 2 | cmbri | ⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 35 | 2 1 | cmbri | ⊢ ( 𝐵 𝐶ℋ 𝐴 ↔ 𝐵 = ( ( 𝐵 ∩ 𝐴 ) ∨ℋ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 36 | 33 34 35 | 3imtr4i | ⊢ ( 𝐴 𝐶ℋ 𝐵 → 𝐵 𝐶ℋ 𝐴 ) |