This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutation is symmetric. Theorem 3.4 of Beran p. 45. (Contributed by NM, 3-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjoml2.1 | |- A e. CH |
|
| pjoml2.2 | |- B e. CH |
||
| Assertion | cmcmlem | |- ( A C_H B -> B C_H A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjoml2.1 | |- A e. CH |
|
| 2 | pjoml2.2 | |- B e. CH |
|
| 3 | 1 | choccli | |- ( _|_ ` A ) e. CH |
| 4 | 2 3 | chub2i | |- B C_ ( ( _|_ ` A ) vH B ) |
| 5 | sseqin2 | |- ( B C_ ( ( _|_ ` A ) vH B ) <-> ( ( ( _|_ ` A ) vH B ) i^i B ) = B ) |
|
| 6 | 4 5 | mpbi | |- ( ( ( _|_ ` A ) vH B ) i^i B ) = B |
| 7 | 6 | ineq2i | |- ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( ( _|_ ` A ) vH B ) i^i B ) ) = ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i B ) |
| 8 | inass | |- ( ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH B ) ) i^i B ) = ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( ( _|_ ` A ) vH B ) i^i B ) ) |
|
| 9 | 1 2 | chdmm1i | |- ( _|_ ` ( A i^i B ) ) = ( ( _|_ ` A ) vH ( _|_ ` B ) ) |
| 10 | 9 | ineq1i | |- ( ( _|_ ` ( A i^i B ) ) i^i B ) = ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i B ) |
| 11 | 7 8 10 | 3eqtr4ri | |- ( ( _|_ ` ( A i^i B ) ) i^i B ) = ( ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH B ) ) i^i B ) |
| 12 | 1 2 | chdmj4i | |- ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( A i^i B ) |
| 13 | 1 2 | chdmj2i | |- ( _|_ ` ( ( _|_ ` A ) vH B ) ) = ( A i^i ( _|_ ` B ) ) |
| 14 | 12 13 | oveq12i | |- ( ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) vH ( _|_ ` ( ( _|_ ` A ) vH B ) ) ) = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) |
| 15 | 14 | eqeq2i | |- ( A = ( ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) vH ( _|_ ` ( ( _|_ ` A ) vH B ) ) ) <-> A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) ) |
| 16 | 15 | biimpri | |- ( A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) -> A = ( ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) vH ( _|_ ` ( ( _|_ ` A ) vH B ) ) ) ) |
| 17 | 16 | fveq2d | |- ( A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) -> ( _|_ ` A ) = ( _|_ ` ( ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) vH ( _|_ ` ( ( _|_ ` A ) vH B ) ) ) ) ) |
| 18 | 2 | choccli | |- ( _|_ ` B ) e. CH |
| 19 | 3 18 | chjcli | |- ( ( _|_ ` A ) vH ( _|_ ` B ) ) e. CH |
| 20 | 3 2 | chjcli | |- ( ( _|_ ` A ) vH B ) e. CH |
| 21 | 19 20 | chdmj4i | |- ( _|_ ` ( ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) vH ( _|_ ` ( ( _|_ ` A ) vH B ) ) ) ) = ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH B ) ) |
| 22 | 17 21 | eqtr2di | |- ( A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) -> ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH B ) ) = ( _|_ ` A ) ) |
| 23 | 22 | ineq1d | |- ( A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) -> ( ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH B ) ) i^i B ) = ( ( _|_ ` A ) i^i B ) ) |
| 24 | 11 23 | eqtrid | |- ( A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) -> ( ( _|_ ` ( A i^i B ) ) i^i B ) = ( ( _|_ ` A ) i^i B ) ) |
| 25 | 24 | oveq2d | |- ( A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) -> ( ( A i^i B ) vH ( ( _|_ ` ( A i^i B ) ) i^i B ) ) = ( ( A i^i B ) vH ( ( _|_ ` A ) i^i B ) ) ) |
| 26 | inss2 | |- ( A i^i B ) C_ B |
|
| 27 | 1 2 | chincli | |- ( A i^i B ) e. CH |
| 28 | 27 2 | pjoml2i | |- ( ( A i^i B ) C_ B -> ( ( A i^i B ) vH ( ( _|_ ` ( A i^i B ) ) i^i B ) ) = B ) |
| 29 | 26 28 | ax-mp | |- ( ( A i^i B ) vH ( ( _|_ ` ( A i^i B ) ) i^i B ) ) = B |
| 30 | incom | |- ( A i^i B ) = ( B i^i A ) |
|
| 31 | incom | |- ( ( _|_ ` A ) i^i B ) = ( B i^i ( _|_ ` A ) ) |
|
| 32 | 30 31 | oveq12i | |- ( ( A i^i B ) vH ( ( _|_ ` A ) i^i B ) ) = ( ( B i^i A ) vH ( B i^i ( _|_ ` A ) ) ) |
| 33 | 25 29 32 | 3eqtr3g | |- ( A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) -> B = ( ( B i^i A ) vH ( B i^i ( _|_ ` A ) ) ) ) |
| 34 | 1 2 | cmbri | |- ( A C_H B <-> A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) ) |
| 35 | 2 1 | cmbri | |- ( B C_H A <-> B = ( ( B i^i A ) vH ( B i^i ( _|_ ` A ) ) ) ) |
| 36 | 33 34 35 | 3imtr4i | |- ( A C_H B -> B C_H A ) |