This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A word representing a closed walk of length N also represents a walk of length N - 1 . The walk is one edge shorter than the closed walk, because the last edge connecting the last with the first vertex is missing. For example, if <" a b c "> e. ( 3 ClWWalksN G ) represents a closed walk "abca" of length 3, then <" a b c "> e. ( 2 WWalksN G ) represents a walk "abc" (not closed if a =/= c ) of length 2, and <" a b c a "> e. ( 3 WWalksN G ) represents also a closed walk "abca" of length 3. (Contributed by AV, 24-Jan-2022) (Revised by AV, 22-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwwlknwwlksn | ⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → 𝑊 ∈ ( ( 𝑁 − 1 ) WWalksN 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwwlknnn | ⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → 𝑁 ∈ ℕ ) | |
| 2 | idd | ⊢ ( 𝑁 ∈ ℕ → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) ) | |
| 3 | idd | ⊢ ( 𝑁 ∈ ℕ → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) | |
| 4 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 5 | npcan1 | ⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 7 | 6 | eqcomd | ⊢ ( 𝑁 ∈ ℕ → 𝑁 = ( ( 𝑁 − 1 ) + 1 ) ) |
| 8 | 7 | eqeq2d | ⊢ ( 𝑁 ∈ ℕ → ( ( ♯ ‘ 𝑊 ) = 𝑁 ↔ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 − 1 ) + 1 ) ) ) |
| 9 | 8 | biimpd | ⊢ ( 𝑁 ∈ ℕ → ( ( ♯ ‘ 𝑊 ) = 𝑁 → ( ♯ ‘ 𝑊 ) = ( ( 𝑁 − 1 ) + 1 ) ) ) |
| 10 | 2 3 9 | 3anim123d | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 − 1 ) + 1 ) ) ) ) |
| 11 | 10 | com12 | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( 𝑁 ∈ ℕ → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 − 1 ) + 1 ) ) ) ) |
| 12 | 11 | 3exp | ⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ( ( ♯ ‘ 𝑊 ) = 𝑁 → ( 𝑁 ∈ ℕ → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 − 1 ) + 1 ) ) ) ) ) ) |
| 13 | 12 | a1dd | ⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ( { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) → ( ( ♯ ‘ 𝑊 ) = 𝑁 → ( 𝑁 ∈ ℕ → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 − 1 ) + 1 ) ) ) ) ) ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑊 ≠ ∅ ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ( { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) → ( ( ♯ ‘ 𝑊 ) = 𝑁 → ( 𝑁 ∈ ℕ → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 − 1 ) + 1 ) ) ) ) ) ) ) |
| 15 | 14 | 3imp1 | ⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑊 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( 𝑁 ∈ ℕ → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 − 1 ) + 1 ) ) ) ) |
| 16 | 15 | com12 | ⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑊 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 − 1 ) + 1 ) ) ) ) |
| 17 | isclwwlkn | ⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ↔ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) | |
| 18 | 17 | a1i | ⊢ ( 𝑁 ∈ ℕ → ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ↔ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) ) |
| 19 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 20 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 21 | 19 20 | isclwwlk | ⊢ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ↔ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑊 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 22 | 21 | anbi1i | ⊢ ( ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ↔ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑊 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) |
| 23 | 18 22 | bitrdi | ⊢ ( 𝑁 ∈ ℕ → ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ↔ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑊 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) ) |
| 24 | nnm1nn0 | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) | |
| 25 | 19 20 | iswwlksnx | ⊢ ( ( 𝑁 − 1 ) ∈ ℕ0 → ( 𝑊 ∈ ( ( 𝑁 − 1 ) WWalksN 𝐺 ) ↔ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 − 1 ) + 1 ) ) ) ) |
| 26 | 24 25 | syl | ⊢ ( 𝑁 ∈ ℕ → ( 𝑊 ∈ ( ( 𝑁 − 1 ) WWalksN 𝐺 ) ↔ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 − 1 ) + 1 ) ) ) ) |
| 27 | 16 23 26 | 3imtr4d | ⊢ ( 𝑁 ∈ ℕ → ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → 𝑊 ∈ ( ( 𝑁 − 1 ) WWalksN 𝐺 ) ) ) |
| 28 | 1 27 | mpcom | ⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → 𝑊 ∈ ( ( 𝑁 − 1 ) WWalksN 𝐺 ) ) |