This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a word to represent a walk of a fixed length, definition of WWalks expanded. (Contributed by AV, 28-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iswwlksnx.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| iswwlksnx.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | iswwlksnx | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iswwlksnx.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | iswwlksnx.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | iswwlksn | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ↔ ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ) ) | |
| 4 | 1 2 | iswwlks | ⊢ ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ↔ ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) |
| 5 | df-3an | ⊢ ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ↔ ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) | |
| 6 | nn0p1gt0 | ⊢ ( 𝑁 ∈ ℕ0 → 0 < ( 𝑁 + 1 ) ) | |
| 7 | 6 | gt0ne0d | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ≠ 0 ) |
| 8 | 7 | adantr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( 𝑁 + 1 ) ≠ 0 ) |
| 9 | neeq1 | ⊢ ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) → ( ( ♯ ‘ 𝑊 ) ≠ 0 ↔ ( 𝑁 + 1 ) ≠ 0 ) ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( ( ♯ ‘ 𝑊 ) ≠ 0 ↔ ( 𝑁 + 1 ) ≠ 0 ) ) |
| 11 | 8 10 | mpbird | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( ♯ ‘ 𝑊 ) ≠ 0 ) |
| 12 | hasheq0 | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑊 ) = 0 ↔ 𝑊 = ∅ ) ) | |
| 13 | 12 | necon3bid | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑊 ) ≠ 0 ↔ 𝑊 ≠ ∅ ) ) |
| 14 | 11 13 | syl5ibcom | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( 𝑊 ∈ Word 𝑉 → 𝑊 ≠ ∅ ) ) |
| 15 | 14 | pm4.71rd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( 𝑊 ∈ Word 𝑉 ↔ ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ) ) ) |
| 16 | 15 | bicomd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ) ↔ 𝑊 ∈ Word 𝑉 ) ) |
| 17 | 16 | anbi1d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) ) |
| 18 | 5 17 | bitrid | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) ) |
| 19 | 4 18 | bitrid | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) ) |
| 20 | 19 | ex | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) → ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) ) ) |
| 21 | 20 | pm5.32rd | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ) ) |
| 22 | df-3an | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ) | |
| 23 | 21 22 | bitr4di | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ) ) |
| 24 | 3 23 | bitrd | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ) ) |