This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The last but one vertex in a closed walk is a neighbor of the first vertex of the closed walk. (Contributed by AV, 17-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwwlknlbonbgr1 | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) → ( 𝑊 ‘ ( 𝑁 − 1 ) ) ∈ ( 𝐺 NeighbVtx ( 𝑊 ‘ 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 3 | 1 2 | clwwlknp | ⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 4 | lsw | ⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) | |
| 5 | fvoveq1 | ⊢ ( ( ♯ ‘ 𝑊 ) = 𝑁 → ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝑊 ‘ ( 𝑁 − 1 ) ) ) | |
| 6 | 4 5 | sylan9eq | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( 𝑁 − 1 ) ) ) |
| 7 | 6 | preq1d | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } = { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ) |
| 8 | 7 | eleq1d | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 9 | 8 | biimpd | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) → { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 10 | 9 | a1d | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ( { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) → { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 11 | 10 | 3imp | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) → { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 12 | 3 11 | syl | ⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 13 | 12 | adantl | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) → { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 14 | 2 | nbusgreledg | ⊢ ( 𝐺 ∈ USGraph → ( ( 𝑊 ‘ ( 𝑁 − 1 ) ) ∈ ( 𝐺 NeighbVtx ( 𝑊 ‘ 0 ) ) ↔ { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) → ( ( 𝑊 ‘ ( 𝑁 − 1 ) ) ∈ ( 𝐺 NeighbVtx ( 𝑊 ‘ 0 ) ) ↔ { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 16 | 13 15 | mpbird | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) → ( 𝑊 ‘ ( 𝑁 − 1 ) ) ∈ ( 𝐺 NeighbVtx ( 𝑊 ‘ 0 ) ) ) |