This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A word representing a closed walk of length N also represents a walk of length N - 1 . The walk is one edge shorter than the closed walk, because the last edge connecting the last with the first vertex is missing. For example, if <" a b c "> e. ( 3 ClWWalksN G ) represents a closed walk "abca" of length 3, then <" a b c "> e. ( 2 WWalksN G ) represents a walk "abc" (not closed if a =/= c ) of length 2, and <" a b c a "> e. ( 3 WWalksN G ) represents also a closed walk "abca" of length 3. (Contributed by AV, 24-Jan-2022) (Revised by AV, 22-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwwlknwwlksn | |- ( W e. ( N ClWWalksN G ) -> W e. ( ( N - 1 ) WWalksN G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwwlknnn | |- ( W e. ( N ClWWalksN G ) -> N e. NN ) |
|
| 2 | idd | |- ( N e. NN -> ( W e. Word ( Vtx ` G ) -> W e. Word ( Vtx ` G ) ) ) |
|
| 3 | idd | |- ( N e. NN -> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) -> A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
|
| 4 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 5 | npcan1 | |- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
|
| 6 | 4 5 | syl | |- ( N e. NN -> ( ( N - 1 ) + 1 ) = N ) |
| 7 | 6 | eqcomd | |- ( N e. NN -> N = ( ( N - 1 ) + 1 ) ) |
| 8 | 7 | eqeq2d | |- ( N e. NN -> ( ( # ` W ) = N <-> ( # ` W ) = ( ( N - 1 ) + 1 ) ) ) |
| 9 | 8 | biimpd | |- ( N e. NN -> ( ( # ` W ) = N -> ( # ` W ) = ( ( N - 1 ) + 1 ) ) ) |
| 10 | 2 3 9 | 3anim123d | |- ( N e. NN -> ( ( W e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ ( # ` W ) = N ) -> ( W e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ ( # ` W ) = ( ( N - 1 ) + 1 ) ) ) ) |
| 11 | 10 | com12 | |- ( ( W e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ ( # ` W ) = N ) -> ( N e. NN -> ( W e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ ( # ` W ) = ( ( N - 1 ) + 1 ) ) ) ) |
| 12 | 11 | 3exp | |- ( W e. Word ( Vtx ` G ) -> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) -> ( ( # ` W ) = N -> ( N e. NN -> ( W e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ ( # ` W ) = ( ( N - 1 ) + 1 ) ) ) ) ) ) |
| 13 | 12 | a1dd | |- ( W e. Word ( Vtx ` G ) -> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) -> ( ( # ` W ) = N -> ( N e. NN -> ( W e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ ( # ` W ) = ( ( N - 1 ) + 1 ) ) ) ) ) ) ) |
| 14 | 13 | adantr | |- ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) -> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) -> ( { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) -> ( ( # ` W ) = N -> ( N e. NN -> ( W e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ ( # ` W ) = ( ( N - 1 ) + 1 ) ) ) ) ) ) ) |
| 15 | 14 | 3imp1 | |- ( ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = N ) -> ( N e. NN -> ( W e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ ( # ` W ) = ( ( N - 1 ) + 1 ) ) ) ) |
| 16 | 15 | com12 | |- ( N e. NN -> ( ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = N ) -> ( W e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ ( # ` W ) = ( ( N - 1 ) + 1 ) ) ) ) |
| 17 | isclwwlkn | |- ( W e. ( N ClWWalksN G ) <-> ( W e. ( ClWWalks ` G ) /\ ( # ` W ) = N ) ) |
|
| 18 | 17 | a1i | |- ( N e. NN -> ( W e. ( N ClWWalksN G ) <-> ( W e. ( ClWWalks ` G ) /\ ( # ` W ) = N ) ) ) |
| 19 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 20 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 21 | 19 20 | isclwwlk | |- ( W e. ( ClWWalks ` G ) <-> ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
| 22 | 21 | anbi1i | |- ( ( W e. ( ClWWalks ` G ) /\ ( # ` W ) = N ) <-> ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = N ) ) |
| 23 | 18 22 | bitrdi | |- ( N e. NN -> ( W e. ( N ClWWalksN G ) <-> ( ( ( W e. Word ( Vtx ` G ) /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = N ) ) ) |
| 24 | nnm1nn0 | |- ( N e. NN -> ( N - 1 ) e. NN0 ) |
|
| 25 | 19 20 | iswwlksnx | |- ( ( N - 1 ) e. NN0 -> ( W e. ( ( N - 1 ) WWalksN G ) <-> ( W e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ ( # ` W ) = ( ( N - 1 ) + 1 ) ) ) ) |
| 26 | 24 25 | syl | |- ( N e. NN -> ( W e. ( ( N - 1 ) WWalksN G ) <-> ( W e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ ( # ` W ) = ( ( N - 1 ) + 1 ) ) ) ) |
| 27 | 16 23 26 | 3imtr4d | |- ( N e. NN -> ( W e. ( N ClWWalksN G ) -> W e. ( ( N - 1 ) WWalksN G ) ) ) |
| 28 | 1 27 | mpcom | |- ( W e. ( N ClWWalksN G ) -> W e. ( ( N - 1 ) WWalksN G ) ) |