This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first symbol of a nonempty word is an element of the alphabet for the word. (Contributed by AV, 29-Sep-2018) (Proof shortened by AV, 14-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fstwrdne0 | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) → ( 𝑊 ‘ 0 ) ∈ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) → 𝑊 ∈ Word 𝑉 ) | |
| 2 | nnge1 | ⊢ ( 𝑁 ∈ ℕ → 1 ≤ 𝑁 ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) → 1 ≤ 𝑁 ) |
| 4 | breq2 | ⊢ ( ( ♯ ‘ 𝑊 ) = 𝑁 → ( 1 ≤ ( ♯ ‘ 𝑊 ) ↔ 1 ≤ 𝑁 ) ) | |
| 5 | 4 | ad2antll | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) → ( 1 ≤ ( ♯ ‘ 𝑊 ) ↔ 1 ≤ 𝑁 ) ) |
| 6 | 3 5 | mpbird | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) → 1 ≤ ( ♯ ‘ 𝑊 ) ) |
| 7 | wrdsymb1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ‘ 0 ) ∈ 𝑉 ) | |
| 8 | 1 6 7 | syl2anc | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) → ( 𝑊 ‘ 0 ) ∈ 𝑉 ) |